Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemd4.l |
|- .<_ = ( le ` K ) |
2 |
|
cdlemd4.j |
|- .\/ = ( join ` K ) |
3 |
|
cdlemd4.a |
|- A = ( Atoms ` K ) |
4 |
|
cdlemd4.h |
|- H = ( LHyp ` K ) |
5 |
|
cdlemd4.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` P ) = P ) |
7 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( K e. HL /\ W e. H ) ) |
8 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> F e. T ) |
9 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 1 3 4 5
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) |
12 |
7 8 9 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F = ( _I |` ( Base ` K ) ) <-> ( F ` P ) = P ) ) |
13 |
6 12
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> F = ( _I |` ( Base ` K ) ) ) |
14 |
13
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` R ) = ( ( _I |` ( Base ` K ) ) ` R ) ) |
15 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` P ) = ( G ` P ) ) |
16 |
15 6
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G ` P ) = P ) |
17 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> G e. T ) |
18 |
10 1 3 4 5
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( G = ( _I |` ( Base ` K ) ) <-> ( G ` P ) = P ) ) |
19 |
7 17 9 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G = ( _I |` ( Base ` K ) ) <-> ( G ` P ) = P ) ) |
20 |
16 19
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> G = ( _I |` ( Base ` K ) ) ) |
21 |
20
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( G ` R ) = ( ( _I |` ( Base ` K ) ) ` R ) ) |
22 |
14 21
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ R e. A ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) = ( G ` P ) /\ ( F ` P ) = P ) ) -> ( F ` R ) = ( G ` R ) ) |