Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme0.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme0.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme0.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme0.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme0.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
6
|
oveq2i |
|- ( Q .\/ U ) = ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) |
8 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> K e. HL ) |
9 |
|
simprrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> Q e. A ) |
10 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
11 |
10
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> K e. Lat ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
14 |
13
|
ad2antrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> P e. ( Base ` K ) ) |
15 |
12 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
16 |
9 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> Q e. ( Base ` K ) ) |
17 |
12 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
18 |
11 14 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
19 |
12 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> W e. ( Base ` K ) ) |
21 |
12 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> Q .<_ ( P .\/ Q ) ) |
22 |
11 14 16 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> Q .<_ ( P .\/ Q ) ) |
23 |
12 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ Q .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
24 |
8 9 18 20 22 23
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
25 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
26 |
1 2 25 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
27 |
26
|
adantrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
28 |
27
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
29 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
30 |
29
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> K e. OL ) |
31 |
12 3 25
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
32 |
30 18 31
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
33 |
24 28 32
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) ) |
34 |
7 33
|
syl5eq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |