| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme0.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme0.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme0.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme0.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme0.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme0.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme0c.3 | 
							 |-  V = ( ( P .\/ R ) ./\ W )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							oveq12i | 
							 |-  ( U ./\ V ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( P .\/ R ) ./\ W ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. HL )  | 
						
						
							| 10 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. OL )  | 
						
						
							| 12 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 15 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								9 12 13 15
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R e. A )  | 
						
						
							| 18 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								9 12 17 18
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> W e. H )  | 
						
						
							| 21 | 
							
								14 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								14 3
							 | 
							latmmdir | 
							 |-  ( ( K e. OL /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) ./\ ( P .\/ R ) ) ./\ W ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 24 | 
							
								11 16 19 22 23
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ ( P .\/ R ) ) ./\ W ) = ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 25 | 
							
								9
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. Lat )  | 
						
						
							| 26 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								12 28
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								13 30
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( P .\/ Q ) )  | 
						
						
							| 33 | 
							
								14 1 2
							 | 
							latnlej1r | 
							 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= Q )  | 
						
						
							| 34 | 
							
								33
							 | 
							necomd | 
							 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q =/= R )  | 
						
						
							| 35 | 
							
								25 27 29 31 32 34
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q =/= R )  | 
						
						
							| 36 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 37 | 
							
								1 2 4
							 | 
							hlatcon3 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. P .<_ ( Q .\/ R ) )  | 
						
						
							| 38 | 
							
								9 12 13 17 36 37
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. P .<_ ( Q .\/ R ) )  | 
						
						
							| 39 | 
							
								1 2 3 4
							 | 
							2llnma2 | 
							 |-  ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( Q =/= R /\ -. P .<_ ( Q .\/ R ) ) ) -> ( ( P .\/ Q ) ./\ ( P .\/ R ) ) = P )  | 
						
						
							| 40 | 
							
								9 13 17 12 35 38 39
							 | 
							syl132anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( P .\/ R ) ) = P )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ ( P .\/ R ) ) ./\ W ) = ( P ./\ W ) )  | 
						
						
							| 42 | 
							
								24 41
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ W ) ./\ ( ( P .\/ R ) ./\ W ) ) = ( P ./\ W ) )  | 
						
						
							| 43 | 
							
								8 42
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( U ./\ V ) = ( P ./\ W ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							 |-  ( 0. ` K ) = ( 0. ` K )  | 
						
						
							| 47 | 
							
								1 3 46 4 5
							 | 
							lhpmat | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 48 | 
							
								44 45 47
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 49 | 
							
								43 48
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( U ./\ V ) = ( 0. ` K ) )  | 
						
						
							| 50 | 
							
								
							 | 
							hlatl | 
							 |-  ( K e. HL -> K e. AtLat )  | 
						
						
							| 51 | 
							
								9 50
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. AtLat )  | 
						
						
							| 52 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P =/= Q )  | 
						
						
							| 53 | 
							
								1 2 3 4 5 6
							 | 
							lhpat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A )  | 
						
						
							| 54 | 
							
								44 45 13 52 53
							 | 
							syl112anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> U e. A )  | 
						
						
							| 55 | 
							
								14 1 2
							 | 
							latnlej1l | 
							 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R =/= P )  | 
						
						
							| 56 | 
							
								55
							 | 
							necomd | 
							 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= R )  | 
						
						
							| 57 | 
							
								25 27 29 31 32 56
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P =/= R )  | 
						
						
							| 58 | 
							
								1 2 3 4 5 7
							 | 
							lhpat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ P =/= R ) ) -> V e. A )  | 
						
						
							| 59 | 
							
								44 45 17 57 58
							 | 
							syl112anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> V e. A )  | 
						
						
							| 60 | 
							
								3 46 4
							 | 
							atnem0 | 
							 |-  ( ( K e. AtLat /\ U e. A /\ V e. A ) -> ( U =/= V <-> ( U ./\ V ) = ( 0. ` K ) ) )  | 
						
						
							| 61 | 
							
								51 54 59 60
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( U =/= V <-> ( U ./\ V ) = ( 0. ` K ) ) )  | 
						
						
							| 62 | 
							
								49 61
							 | 
							mpbird | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> U =/= V )  |