Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme0.l | |- .<_ = ( le ` K ) |
|
cdleme0.j | |- .\/ = ( join ` K ) |
||
cdleme0.m | |- ./\ = ( meet ` K ) |
||
cdleme0.a | |- A = ( Atoms ` K ) |
||
cdleme0.h | |- H = ( LHyp ` K ) |
||
cdleme0.u | |- U = ( ( P .\/ Q ) ./\ W ) |
||
cdleme0c.3 | |- V = ( ( P .\/ R ) ./\ W ) |
||
Assertion | cdleme0gN | |- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ R e. A ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> V =/= Q ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.l | |- .<_ = ( le ` K ) |
|
2 | cdleme0.j | |- .\/ = ( join ` K ) |
|
3 | cdleme0.m | |- ./\ = ( meet ` K ) |
|
4 | cdleme0.a | |- A = ( Atoms ` K ) |
|
5 | cdleme0.h | |- H = ( LHyp ` K ) |
|
6 | cdleme0.u | |- U = ( ( P .\/ Q ) ./\ W ) |
|
7 | cdleme0c.3 | |- V = ( ( P .\/ R ) ./\ W ) |
|
8 | 1 2 3 4 5 7 | cdleme0c | |- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ R e. A ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> V =/= Q ) |