Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme0.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme0.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme0.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme0.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme0.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. R .<_ W ) |
8 |
|
neanior |
|- ( ( R =/= P /\ R =/= Q ) <-> -. ( R = P \/ R = Q ) ) |
9 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) |
10 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> R e. A ) |
11 |
10
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R e. A ) |
12 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R =/= P ) |
13 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R =/= Q ) |
14 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R .<_ ( P .\/ Q ) ) |
15 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> K e. HL ) |
16 |
|
hlcvl |
|- ( K e. HL -> K e. CvLat ) |
17 |
15 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> K e. CvLat ) |
18 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) |
19 |
18
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> P e. A ) |
20 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A ) |
21 |
20
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> Q e. A ) |
22 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> P =/= Q ) |
23 |
4 1 2
|
cvlsupr2 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) |
24 |
17 19 21 11 22 23
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) |
25 |
12 13 14 24
|
mpbir3and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
26 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) |
27 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> W e. H ) |
28 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W ) |
29 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q ) |
30 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
31 |
26 27 18 28 20 29 30
|
syl222anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> U e. A ) |
32 |
31
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> U e. A ) |
33 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( K e. HL /\ W e. H ) ) |
34 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
35 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
36 |
1 2 3 4 5 6
|
cdleme02N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( ( P .\/ U ) = ( Q .\/ U ) /\ U .<_ W ) ) |
37 |
36
|
simpld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( P .\/ U ) = ( Q .\/ U ) ) |
38 |
33 34 35 22 37
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P .\/ U ) = ( Q .\/ U ) ) |
39 |
|
df-rmo |
|- ( E* r e. A ( P .\/ r ) = ( Q .\/ r ) <-> E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) |
40 |
|
oveq2 |
|- ( r = R -> ( P .\/ r ) = ( P .\/ R ) ) |
41 |
|
oveq2 |
|- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
42 |
40 41
|
eqeq12d |
|- ( r = R -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ R ) = ( Q .\/ R ) ) ) |
43 |
|
oveq2 |
|- ( r = U -> ( P .\/ r ) = ( P .\/ U ) ) |
44 |
|
oveq2 |
|- ( r = U -> ( Q .\/ r ) = ( Q .\/ U ) ) |
45 |
43 44
|
eqeq12d |
|- ( r = U -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ U ) = ( Q .\/ U ) ) ) |
46 |
42 45
|
rmoi |
|- ( ( E* r e. A ( P .\/ r ) = ( Q .\/ r ) /\ ( R e. A /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( U e. A /\ ( P .\/ U ) = ( Q .\/ U ) ) ) -> R = U ) |
47 |
39 46
|
syl3an1br |
|- ( ( E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) /\ ( R e. A /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( U e. A /\ ( P .\/ U ) = ( Q .\/ U ) ) ) -> R = U ) |
48 |
9 11 25 32 38 47
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R = U ) |
49 |
36
|
simprd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> U .<_ W ) |
50 |
33 34 35 22 49
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> U .<_ W ) |
51 |
48 50
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R .<_ W ) |
52 |
51
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( R =/= P /\ R =/= Q ) -> R .<_ W ) ) |
53 |
8 52
|
syl5bir |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( -. ( R = P \/ R = Q ) -> R .<_ W ) ) |
54 |
7 53
|
mt3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R = P \/ R = Q ) ) |