Metamath Proof Explorer


Theorem cdleme0moN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l
|- .<_ = ( le ` K )
cdleme0.j
|- .\/ = ( join ` K )
cdleme0.m
|- ./\ = ( meet ` K )
cdleme0.a
|- A = ( Atoms ` K )
cdleme0.h
|- H = ( LHyp ` K )
cdleme0.u
|- U = ( ( P .\/ Q ) ./\ W )
Assertion cdleme0moN
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R = P \/ R = Q ) )

Proof

Step Hyp Ref Expression
1 cdleme0.l
 |-  .<_ = ( le ` K )
2 cdleme0.j
 |-  .\/ = ( join ` K )
3 cdleme0.m
 |-  ./\ = ( meet ` K )
4 cdleme0.a
 |-  A = ( Atoms ` K )
5 cdleme0.h
 |-  H = ( LHyp ` K )
6 cdleme0.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 simp23r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. R .<_ W )
8 neanior
 |-  ( ( R =/= P /\ R =/= Q ) <-> -. ( R = P \/ R = Q ) )
9 simpl33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) )
10 simp23l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> R e. A )
11 10 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R e. A )
12 simprl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R =/= P )
13 simprr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R =/= Q )
14 simpl32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R .<_ ( P .\/ Q ) )
15 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> K e. HL )
16 hlcvl
 |-  ( K e. HL -> K e. CvLat )
17 15 16 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> K e. CvLat )
18 simp21l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A )
19 18 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> P e. A )
20 simp22l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A )
21 20 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> Q e. A )
22 simpl31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> P =/= Q )
23 4 1 2 cvlsupr2
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )
24 17 19 21 11 22 23 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )
25 12 13 14 24 mpbir3and
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P .\/ R ) = ( Q .\/ R ) )
26 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL )
27 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> W e. H )
28 simp21r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W )
29 simp31
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q )
30 1 2 3 4 5 6 lhpat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A )
31 26 27 18 28 20 29 30 syl222anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> U e. A )
32 31 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> U e. A )
33 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( K e. HL /\ W e. H ) )
34 simpl21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P e. A /\ -. P .<_ W ) )
35 simpl22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )
36 1 2 3 4 5 6 cdleme02N
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( ( P .\/ U ) = ( Q .\/ U ) /\ U .<_ W ) )
37 36 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( P .\/ U ) = ( Q .\/ U ) )
38 33 34 35 22 37 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> ( P .\/ U ) = ( Q .\/ U ) )
39 df-rmo
 |-  ( E* r e. A ( P .\/ r ) = ( Q .\/ r ) <-> E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) )
40 oveq2
 |-  ( r = R -> ( P .\/ r ) = ( P .\/ R ) )
41 oveq2
 |-  ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) )
42 40 41 eqeq12d
 |-  ( r = R -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ R ) = ( Q .\/ R ) ) )
43 oveq2
 |-  ( r = U -> ( P .\/ r ) = ( P .\/ U ) )
44 oveq2
 |-  ( r = U -> ( Q .\/ r ) = ( Q .\/ U ) )
45 43 44 eqeq12d
 |-  ( r = U -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ U ) = ( Q .\/ U ) ) )
46 42 45 rmoi
 |-  ( ( E* r e. A ( P .\/ r ) = ( Q .\/ r ) /\ ( R e. A /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( U e. A /\ ( P .\/ U ) = ( Q .\/ U ) ) ) -> R = U )
47 39 46 syl3an1br
 |-  ( ( E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) /\ ( R e. A /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( U e. A /\ ( P .\/ U ) = ( Q .\/ U ) ) ) -> R = U )
48 9 11 25 32 38 47 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R = U )
49 36 simprd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> U .<_ W )
50 33 34 35 22 49 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> U .<_ W )
51 48 50 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ ( R =/= P /\ R =/= Q ) ) -> R .<_ W )
52 51 ex
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( R =/= P /\ R =/= Q ) -> R .<_ W ) )
53 8 52 syl5bir
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( -. ( R = P \/ R = Q ) -> R .<_ W ) )
54 7 53 mt3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) /\ E* r ( r e. A /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( R = P \/ R = Q ) )