| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme0nex.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme0nex.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme0nex.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> -. R .<_ W )  | 
						
						
							| 5 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							jca | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> R e. A )  | 
						
						
							| 8 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ralnex | 
							 |-  ( A. r e. A -. ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylibr | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> A. r e. A -. ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							 |-  ( r = R -> ( r .<_ W <-> R .<_ W ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							notbid | 
							 |-  ( r = R -> ( -. r .<_ W <-> -. R .<_ W ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = R -> ( P .\/ r ) = ( P .\/ R ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqeq12d | 
							 |-  ( r = R -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ R ) = ( Q .\/ R ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							anbi12d | 
							 |-  ( r = R -> ( ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> ( -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							notbid | 
							 |-  ( r = R -> ( -. ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> -. ( -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcva | 
							 |-  ( ( R e. A /\ A. r e. A -. ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> -. ( -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) )  | 
						
						
							| 19 | 
							
								7 10 18
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> -. ( -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> K e. HL )  | 
						
						
							| 21 | 
							
								
							 | 
							hlcvl | 
							 |-  ( K e. HL -> K e. CvLat )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> K e. CvLat )  | 
						
						
							| 23 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> P e. A )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> Q e. A )  | 
						
						
							| 25 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> P =/= Q )  | 
						
						
							| 26 | 
							
								3 1 2
							 | 
							cvlsupr2 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 27 | 
							
								22 23 24 7 25 26
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							anbi2d | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) <-> ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) ) )  | 
						
						
							| 29 | 
							
								19 28
							 | 
							mtbid | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> -. ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							ianor | 
							 |-  ( -. ( ( R =/= P /\ R =/= Q ) /\ ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) <-> ( -. ( R =/= P /\ R =/= Q ) \/ -. ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) <-> ( ( R =/= P /\ R =/= Q ) /\ R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							anbi2i | 
							 |-  ( ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) <-> ( -. R .<_ W /\ ( ( R =/= P /\ R =/= Q ) /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							an12 | 
							 |-  ( ( -. R .<_ W /\ ( ( R =/= P /\ R =/= Q ) /\ R .<_ ( P .\/ Q ) ) ) <-> ( ( R =/= P /\ R =/= Q ) /\ ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							bitri | 
							 |-  ( ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) <-> ( ( R =/= P /\ R =/= Q ) /\ ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							notbii | 
							 |-  ( -. ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) <-> -. ( ( R =/= P /\ R =/= Q ) /\ ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							pm4.62 | 
							 |-  ( ( ( R =/= P /\ R =/= Q ) -> -. ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) <-> ( -. ( R =/= P /\ R =/= Q ) \/ -. ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 37 | 
							
								30 35 36
							 | 
							3bitr4ri | 
							 |-  ( ( ( R =/= P /\ R =/= Q ) -> -. ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) <-> -. ( -. R .<_ W /\ ( R =/= P /\ R =/= Q /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 38 | 
							
								29 37
							 | 
							sylibr | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( R =/= P /\ R =/= Q ) -> -. ( -. R .<_ W /\ R .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 39 | 
							
								6 38
							 | 
							mt2d | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> -. ( R =/= P /\ R =/= Q ) )  | 
						
						
							| 40 | 
							
								
							 | 
							neanior | 
							 |-  ( ( R =/= P /\ R =/= Q ) <-> -. ( R = P \/ R = Q ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							con2bii | 
							 |-  ( ( R = P \/ R = Q ) <-> -. ( R =/= P /\ R =/= Q ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							sylibr | 
							 |-  ( ( ( K e. HL /\ R .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R = P \/ R = Q ) )  |