| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							 |-  F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2i | 
							 |-  ( R .\/ F ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A )  | 
						
						
							| 11 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. Lat )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 14 | 
							
								13 4
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A )  | 
						
						
							| 17 | 
							
								13 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. A )  | 
						
						
							| 20 | 
							
								13 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								12 18 21 22
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								13 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								13 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								12 23 25 26
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								6 27
							 | 
							eqeltrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( R .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								12 15 28 29
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								12 18 15 31
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								13 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 34 | 
							
								12 32 25 33
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 35 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 36 | 
							
								12 21 34 35
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 37 | 
							
								13 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> R .<_ ( R .\/ U ) )  | 
						
						
							| 38 | 
							
								12 15 28 37
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( R .\/ U ) )  | 
						
						
							| 39 | 
							
								13 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) /\ R .<_ ( R .\/ U ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) )  | 
						
						
							| 40 | 
							
								9 10 30 36 38 39
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) )  | 
						
						
							| 41 | 
							
								13 1 2
							 | 
							latlej2 | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( P .\/ R ) )  | 
						
						
							| 42 | 
							
								12 18 15 41
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( P .\/ R ) )  | 
						
						
							| 43 | 
							
								13 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( P .\/ R ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 44 | 
							
								9 10 32 25 42 43
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 46 | 
							
								1 2 45 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3ad2antr3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( R .\/ W ) ) = ( ( P .\/ R ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 50 | 
							
								49
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. OL )  | 
						
						
							| 51 | 
							
								13 3 45
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) )  | 
						
						
							| 52 | 
							
								50 32 51
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) )  | 
						
						
							| 53 | 
							
								44 48 52
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( Q .\/ ( P .\/ R ) ) )  | 
						
						
							| 55 | 
							
								13 2
							 | 
							latj12 | 
							 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 56 | 
							
								12 21 15 34 55
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 57 | 
							
								13 2
							 | 
							latj13 | 
							 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) )  | 
						
						
							| 58 | 
							
								12 21 18 15 57
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) )  | 
						
						
							| 59 | 
							
								54 56 58
							 | 
							3eqtr3rd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) )  | 
						
						
							| 61 | 
							
								1 2 3 4 5 6
							 | 
							cdlemeulpq | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							3adantr3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U .<_ ( P .\/ Q ) )  | 
						
						
							| 63 | 
							
								13 1 2
							 | 
							latjlej2 | 
							 |-  ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) )  | 
						
						
							| 64 | 
							
								12 28 23 15 63
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) )  | 
						
						
							| 66 | 
							
								13 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 67 | 
							
								12 15 23 66
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 68 | 
							
								13 1 3
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ ( R .\/ U ) e. ( Base ` K ) /\ ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) )  | 
						
						
							| 69 | 
							
								12 30 67 68
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) )  | 
						
						
							| 70 | 
							
								65 69
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) )  | 
						
						
							| 71 | 
							
								40 60 70
							 | 
							3eqtr2rd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) )  | 
						
						
							| 72 | 
							
								8 71
							 | 
							eqtr4id | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) )  |