Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme1.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme1.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme1.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme1.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme1.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme1.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
7
|
oveq2i |
|- ( R .\/ F ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
9 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL ) |
10 |
|
simpr3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A ) |
11 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
12 |
11
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. Lat ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
15 |
10 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. ( Base ` K ) ) |
16 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A ) |
17 |
13 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. ( Base ` K ) ) |
19 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. A ) |
20 |
13 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
21 |
19 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. ( Base ` K ) ) |
22 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
23 |
12 18 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
24 |
13 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
25 |
24
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> W e. ( Base ` K ) ) |
26 |
13 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
27 |
12 23 25 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
28 |
6 27
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. ( Base ` K ) ) |
29 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
30 |
12 15 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
31 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
32 |
12 18 15 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
33 |
13 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
34 |
12 32 25 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
35 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
36 |
12 21 34 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
37 |
13 1 2
|
latlej1 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> R .<_ ( R .\/ U ) ) |
38 |
12 15 28 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( R .\/ U ) ) |
39 |
13 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) /\ R .<_ ( R .\/ U ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
40 |
9 10 30 36 38 39
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
41 |
13 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( P .\/ R ) ) |
42 |
12 18 15 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> R .<_ ( P .\/ R ) ) |
43 |
13 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( P .\/ R ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) ) |
44 |
9 10 32 25 42 43
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( R .\/ W ) ) ) |
45 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
46 |
1 2 45 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
47 |
46
|
3ad2antr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
48 |
47
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( R .\/ W ) ) = ( ( P .\/ R ) ./\ ( 1. ` K ) ) ) |
49 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
50 |
49
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. OL ) |
51 |
13 3 45
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
52 |
50 32 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
53 |
44 48 52
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) = ( P .\/ R ) ) |
54 |
53
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( Q .\/ ( P .\/ R ) ) ) |
55 |
13 2
|
latj12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
56 |
12 21 15 34 55
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( R .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
57 |
13 2
|
latj13 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) ) |
58 |
12 21 18 15 57
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( P .\/ R ) ) = ( R .\/ ( P .\/ Q ) ) ) |
59 |
54 56 58
|
3eqtr3rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) = ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
60 |
59
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( ( R .\/ U ) ./\ ( R .\/ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
61 |
1 2 3 4 5 6
|
cdlemeulpq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |
62 |
61
|
3adantr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> U .<_ ( P .\/ Q ) ) |
63 |
13 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) ) |
64 |
12 28 23 15 63
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( U .<_ ( P .\/ Q ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) ) |
65 |
62 64
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) ) |
66 |
13 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
67 |
12 15 23 66
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
68 |
13 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( R .\/ U ) e. ( Base ` K ) /\ ( R .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) ) |
69 |
12 30 67 68
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) .<_ ( R .\/ ( P .\/ Q ) ) <-> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) ) |
70 |
65 69
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( R .\/ ( P .\/ Q ) ) ) = ( R .\/ U ) ) |
71 |
40 60 70
|
3eqtr2rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) = ( R .\/ ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) ) |
72 |
8 71
|
eqtr4id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) ) |