Metamath Proof Explorer


Theorem cdleme10tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. Y represents t_2. In their notation, we prove t \/ t_2 = t \/ r. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme10t.l
|- .<_ = ( le ` K )
cdleme10t.j
|- .\/ = ( join ` K )
cdleme10t.m
|- ./\ = ( meet ` K )
cdleme10t.a
|- A = ( Atoms ` K )
cdleme10t.h
|- H = ( LHyp ` K )
cdleme10t.y
|- Y = ( ( R .\/ T ) ./\ W )
Assertion cdleme10tN
|- ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( T e. A /\ -. T .<_ W ) ) -> ( T .\/ Y ) = ( T .\/ R ) )

Proof

Step Hyp Ref Expression
1 cdleme10t.l
 |-  .<_ = ( le ` K )
2 cdleme10t.j
 |-  .\/ = ( join ` K )
3 cdleme10t.m
 |-  ./\ = ( meet ` K )
4 cdleme10t.a
 |-  A = ( Atoms ` K )
5 cdleme10t.h
 |-  H = ( LHyp ` K )
6 cdleme10t.y
 |-  Y = ( ( R .\/ T ) ./\ W )
7 1 2 3 4 5 6 cdleme10
 |-  ( ( ( K e. HL /\ W e. H ) /\ R e. A /\ ( T e. A /\ -. T .<_ W ) ) -> ( T .\/ Y ) = ( T .\/ R ) )