| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme12.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme12.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme12.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme12.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme12.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme12.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme12.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme12.g | 
							 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp11l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. HL )  | 
						
						
							| 10 | 
							
								9
							 | 
							hllatd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp12l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp13l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> Q e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 14
							 | 
							cdleme0aa | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								11 12 13 15
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								14 2
							 | 
							latjidm | 
							 |-  ( ( K e. Lat /\ U e. ( Base ` K ) ) -> ( U .\/ U ) = U )  | 
						
						
							| 18 | 
							
								10 16 17
							 | 
							syl2anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( U .\/ U ) = U )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ T ) .\/ U ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U .<_ ( S .\/ T ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. A )  | 
						
						
							| 22 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. A )  | 
						
						
							| 25 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( T e. A -> T e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								14 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ S e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								10 23 26 27
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								14 1 2
							 | 
							latleeqj2 | 
							 |-  ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( U .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) ) )  | 
						
						
							| 30 | 
							
								10 16 28 29
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( U .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) ) )  | 
						
						
							| 31 | 
							
								20 30
							 | 
							mpbid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ U ) = ( S .\/ T ) )  | 
						
						
							| 32 | 
							
								19 31
							 | 
							eqtr2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) = ( ( S .\/ T ) .\/ ( U .\/ U ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S e. A /\ -. S .<_ W ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( S .\/ F ) = ( S .\/ U ) )  | 
						
						
							| 35 | 
							
								11 12 13 33 34
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ F ) = ( S .\/ U ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( T e. A /\ -. T .<_ W ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( T e. A /\ -. T .<_ W ) ) ) -> ( T .\/ G ) = ( T .\/ U ) )  | 
						
						
							| 38 | 
							
								11 12 13 36 37
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( T .\/ G ) = ( T .\/ U ) )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							oveq12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) )  | 
						
						
							| 40 | 
							
								14 2
							 | 
							latj4 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ ( U e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) )  | 
						
						
							| 41 | 
							
								10 23 26 16 16 40
							 | 
							syl122anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( U .\/ U ) ) = ( ( S .\/ U ) .\/ ( T .\/ U ) ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( U .\/ U ) ) )  | 
						
						
							| 43 | 
							
								32 42
							 | 
							eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) = ( ( S .\/ F ) .\/ ( T .\/ G ) ) )  | 
						
						
							| 44 | 
							
								1 2 3 4 5 6 7 14
							 | 
							cdleme1b | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 45 | 
							
								11 12 13 21 44
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6 8 14
							 | 
							cdleme1b | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) )  | 
						
						
							| 47 | 
							
								11 12 13 24 46
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> G e. ( Base ` K ) )  | 
						
						
							| 48 | 
							
								14 2
							 | 
							latj4 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ F e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ G e. ( Base ` K ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( F .\/ G ) ) )  | 
						
						
							| 49 | 
							
								10 23 45 26 47 48
							 | 
							syl122anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ F ) .\/ ( T .\/ G ) ) = ( ( S .\/ T ) .\/ ( F .\/ G ) ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							eqtr2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) )  | 
						
						
							| 51 | 
							
								14 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ G e. ( Base ` K ) ) -> ( F .\/ G ) e. ( Base ` K ) )  | 
						
						
							| 52 | 
							
								10 45 47 51
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) e. ( Base ` K ) )  | 
						
						
							| 53 | 
							
								14 1 2
							 | 
							latleeqj2 | 
							 |-  ( ( K e. Lat /\ ( F .\/ G ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) ) )  | 
						
						
							| 54 | 
							
								10 52 28 53
							 | 
							syl3anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( ( S .\/ T ) .\/ ( F .\/ G ) ) = ( S .\/ T ) ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							mpbird | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) .<_ ( S .\/ T ) )  | 
						
						
							| 56 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 57 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P =/= Q )  | 
						
						
							| 59 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 60 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme3fa | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F e. A )  | 
						
						
							| 61 | 
							
								11 56 57 33 58 59 60
							 | 
							syl132anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F e. A )  | 
						
						
							| 62 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. T .<_ ( P .\/ Q ) )  | 
						
						
							| 63 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme3fa | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) ) ) -> G e. A )  | 
						
						
							| 64 | 
							
								11 56 57 36 58 62 63
							 | 
							syl132anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> G e. A )  | 
						
						
							| 65 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme11l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> F =/= G )  | 
						
						
							| 66 | 
							
								1 2 4
							 | 
							ps-1 | 
							 |-  ( ( K e. HL /\ ( F e. A /\ G e. A /\ F =/= G ) /\ ( S e. A /\ T e. A ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( F .\/ G ) = ( S .\/ T ) ) )  | 
						
						
							| 67 | 
							
								9 61 64 65 21 24 66
							 | 
							syl132anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( F .\/ G ) .<_ ( S .\/ T ) <-> ( F .\/ G ) = ( S .\/ T ) ) )  | 
						
						
							| 68 | 
							
								55 67
							 | 
							mpbid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( F .\/ G ) = ( S .\/ T ) )  |