Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme11.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme11.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme11.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme11.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme11.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme11.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme11.c |
|- C = ( ( P .\/ S ) ./\ W ) |
8 |
|
cdleme11.d |
|- D = ( ( P .\/ T ) ./\ W ) |
9 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
11 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. A ) |
12 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
13 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. HL ) |
14 |
13
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> K e. Lat ) |
15 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. A ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
18 |
15 17
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P e. ( Base ` K ) ) |
19 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. A ) |
20 |
16 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S e. ( Base ` K ) ) |
22 |
16 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
23 |
11 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> T e. ( Base ` K ) ) |
24 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) ) |
25 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) ) |
26 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
27 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> U .<_ ( S .\/ T ) ) |
28 |
1 2 3 4 5 6
|
cdleme11c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. P .<_ ( S .\/ T ) ) |
29 |
24 25 26 27 28
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. P .<_ ( S .\/ T ) ) |
30 |
16 1 2
|
latnlej1r |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ S e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ -. P .<_ ( S .\/ T ) ) -> P =/= T ) |
31 |
14 18 21 23 29 30
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> P =/= T ) |
32 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> S =/= T ) |
33 |
1 2 4
|
hlatcon2 |
|- ( ( K e. HL /\ ( S e. A /\ T e. A /\ P e. A ) /\ ( S =/= T /\ -. P .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ T ) ) |
34 |
13 19 11 15 32 29 33
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ T ) ) |
35 |
1 2 3 4 5 8 7
|
cdleme0e |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ T e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= T /\ -. S .<_ ( P .\/ T ) ) ) -> D =/= C ) |
36 |
9 10 11 12 31 34 35
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> D =/= C ) |
37 |
36
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ P =/= Q ) /\ ( S =/= T /\ -. S .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) -> C =/= D ) |