| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme12.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme12.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme12.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme12.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme12.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme12.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme12.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme12.g | 
							 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme16e | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ -. U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) ./\ ( F .\/ G ) ) = ( ( S .\/ T ) ./\ W ) )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme16f | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ -. U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) ./\ ( F .\/ G ) ) = ( ( F .\/ G ) ./\ W ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr3d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ -. U .<_ ( S .\/ T ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) )  |