| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme17.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme17.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme17.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme17.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme17.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme17.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme17.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme17.g | 
							 |-  G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme17.c | 
							 |-  C = ( ( P .\/ S ) ./\ W )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							cdleme7a | 
							 |-  G = ( ( P .\/ Q ) ./\ ( F .\/ C ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 9
							 | 
							cdleme9 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( F .\/ C ) = ( Q .\/ C ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ C ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ C ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> G = ( ( P .\/ Q ) ./\ ( Q .\/ C ) ) )  |