| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme17.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme17.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme17.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme17.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme17.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme17.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme17.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme17.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 9 |
|
eqid |
|- ( ( P .\/ S ) ./\ W ) = ( ( P .\/ S ) ./\ W ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
cdleme17a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> G = ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
| 11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> K e. HL ) |
| 12 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> W e. H ) |
| 13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P e. A ) |
| 14 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. P .<_ W ) |
| 15 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> Q e. A ) |
| 16 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> S e. A ) |
| 17 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 18 |
1 2 3 4 5 6 7 8 9
|
cdleme17c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q ) |
| 19 |
11 12 13 14 15 16 17 18
|
syl223anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q ) |
| 20 |
10 19
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> G = Q ) |