Metamath Proof Explorer


Theorem cdleme17d2

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. F , G represent f(s), f_s(p) respectively. We show, in their notation, f_s(p)=q. TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b
|- B = ( Base ` K )
cdlemef46.l
|- .<_ = ( le ` K )
cdlemef46.j
|- .\/ = ( join ` K )
cdlemef46.m
|- ./\ = ( meet ` K )
cdlemef46.a
|- A = ( Atoms ` K )
cdlemef46.h
|- H = ( LHyp ` K )
cdlemef46.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
Assertion cdleme17d2
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( F ` P ) = Q )

Proof

Step Hyp Ref Expression
1 cdlemef46.b
 |-  B = ( Base ` K )
2 cdlemef46.l
 |-  .<_ = ( le ` K )
3 cdlemef46.j
 |-  .\/ = ( join ` K )
4 cdlemef46.m
 |-  ./\ = ( meet ` K )
5 cdlemef46.a
 |-  A = ( Atoms ` K )
6 cdlemef46.h
 |-  H = ( LHyp ` K )
7 cdlemef46.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
12 simp2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P =/= Q )
13 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )
14 simp2r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( S e. A /\ -. S .<_ W ) )
15 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> K e. HL )
16 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P e. A )
17 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> Q e. A )
18 2 3 5 hlatlej1
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) )
19 15 16 17 18 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P .<_ ( P .\/ Q ) )
20 simp3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. S .<_ ( P .\/ Q ) )
21 1 2 3 4 5 6 7 8 10 9 cdlemefs45
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( P e. A /\ -. P .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( F ` P ) = [_ P / s ]_ [_ S / t ]_ E )
22 11 12 13 14 19 20 21 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( F ` P ) = [_ P / s ]_ [_ S / t ]_ E )
23 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> S e. A )
24 eqid
 |-  ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
25 eqid
 |-  ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) )
26 8 9 24 25 cdleme31sde
 |-  ( ( P e. A /\ S e. A ) -> [_ P / s ]_ [_ S / t ]_ E = ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) ) )
27 16 23 26 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> [_ P / s ]_ [_ S / t ]_ E = ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) ) )
28 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )
29 2 3 4 5 6 7 24 25 cdleme17d1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q )
30 28 13 17 14 20 29 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q )
31 22 27 30 3eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( F ` P ) = Q )