Metamath Proof Explorer


Theorem cdleme17d3

Description: TODO: FIX COMMENT. (Contributed by NM, 5-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b
|- B = ( Base ` K )
cdlemef46.l
|- .<_ = ( le ` K )
cdlemef46.j
|- .\/ = ( join ` K )
cdlemef46.m
|- ./\ = ( meet ` K )
cdlemef46.a
|- A = ( Atoms ` K )
cdlemef46.h
|- H = ( LHyp ` K )
cdlemef46.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
Assertion cdleme17d3
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( F ` P ) = Q )

Proof

Step Hyp Ref Expression
1 cdlemef46.b
 |-  B = ( Base ` K )
2 cdlemef46.l
 |-  .<_ = ( le ` K )
3 cdlemef46.j
 |-  .\/ = ( join ` K )
4 cdlemef46.m
 |-  ./\ = ( meet ` K )
5 cdlemef46.a
 |-  A = ( Atoms ` K )
6 cdlemef46.h
 |-  H = ( LHyp ` K )
7 cdlemef46.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( K e. HL /\ W e. H ) )
12 simpl2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( P e. A /\ -. P .<_ W ) )
13 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( Q e. A /\ -. Q .<_ W ) )
14 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> P =/= Q )
15 2 3 5 6 cdlemb2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. e e. A ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) )
16 11 12 13 14 15 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> E. e e. A ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) )
17 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
18 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )
19 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> e e. A )
20 simp3rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> -. e .<_ W )
21 19 20 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> ( e e. A /\ -. e .<_ W ) )
22 simp3rr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> -. e .<_ ( P .\/ Q ) )
23 1 2 3 4 5 6 7 8 9 10 cdleme17d2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( e e. A /\ -. e .<_ W ) ) /\ -. e .<_ ( P .\/ Q ) ) -> ( F ` P ) = Q )
24 17 18 21 22 23 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) ) -> ( F ` P ) = Q )
25 24 3expia
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( ( e e. A /\ ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) ) -> ( F ` P ) = Q ) )
26 25 expd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( e e. A -> ( ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) -> ( F ` P ) = Q ) ) )
27 26 rexlimdv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( E. e e. A ( -. e .<_ W /\ -. e .<_ ( P .\/ Q ) ) -> ( F ` P ) = Q ) )
28 16 27 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q ) -> ( F ` P ) = Q )