Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme18.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme18.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme18.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme18.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme18.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme18.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme18.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme18.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( Q .\/ S ) ./\ W ) ) ) |
9 |
|
eqid |
|- Q = Q |
10 |
|
oveq2 |
|- ( G = Q -> ( Q .\/ G ) = ( Q .\/ Q ) ) |
11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
12 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
13 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q ) |
14 |
11 12 13
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ Q ) = Q ) |
15 |
10 14
|
sylan9eqr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ G = Q ) -> ( Q .\/ G ) = Q ) |
16 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A ) |
18 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
19 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
20 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
21 |
11 17 12 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ Q ) ) |
22 |
1 2 3 4 5 6 7 8
|
cdleme5 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ Q .<_ ( P .\/ Q ) ) ) -> ( Q .\/ G ) = ( P .\/ Q ) ) |
23 |
16 17 12 18 19 21 22
|
syl132anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ G ) = ( P .\/ Q ) ) |
24 |
23
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ G = Q ) -> ( Q .\/ G ) = ( P .\/ Q ) ) |
25 |
15 24
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ G = Q ) -> Q = ( P .\/ Q ) ) |
26 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
27 |
2 4
|
2atneat |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) ) -> -. ( P .\/ Q ) e. A ) |
28 |
11 17 12 26 27
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. ( P .\/ Q ) e. A ) |
29 |
|
nelne2 |
|- ( ( Q e. A /\ -. ( P .\/ Q ) e. A ) -> Q =/= ( P .\/ Q ) ) |
30 |
29
|
necomd |
|- ( ( Q e. A /\ -. ( P .\/ Q ) e. A ) -> ( P .\/ Q ) =/= Q ) |
31 |
12 28 30
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) =/= Q ) |
32 |
31
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ G = Q ) -> ( P .\/ Q ) =/= Q ) |
33 |
25 32
|
eqnetrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) /\ G = Q ) -> Q =/= Q ) |
34 |
33
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G = Q -> Q =/= Q ) ) |
35 |
34
|
necon2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Q = Q -> G =/= Q ) ) |
36 |
9 35
|
mpi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> G =/= Q ) |