Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
13 |
12
|
3ad2ant1 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> K e. Lat ) |
14 |
|
simp1 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> K e. HL ) |
15 |
|
simp21 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> R e. A ) |
16 |
|
simp22 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> S e. A ) |
17 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
19 |
|
simp23 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> T e. A ) |
20 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
21 |
14 16 19 20
|
syl3anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
22 |
|
simp33 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> R .<_ ( S .\/ T ) ) |
23 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> S .<_ ( S .\/ T ) ) |
24 |
14 16 19 23
|
syl3anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> S .<_ ( S .\/ T ) ) |
25 |
11 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
26 |
15 25
|
syl |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> R e. ( Base ` K ) ) |
27 |
11 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
28 |
16 27
|
syl |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> S e. ( Base ` K ) ) |
29 |
11 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( S .\/ T ) /\ S .<_ ( S .\/ T ) ) <-> ( R .\/ S ) .<_ ( S .\/ T ) ) ) |
30 |
13 26 28 21 29
|
syl13anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( ( R .<_ ( S .\/ T ) /\ S .<_ ( S .\/ T ) ) <-> ( R .\/ S ) .<_ ( S .\/ T ) ) ) |
31 |
22 24 30
|
mpbi2and |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( R .\/ S ) .<_ ( S .\/ T ) ) |
32 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> S .<_ ( R .\/ S ) ) |
33 |
14 15 16 32
|
syl3anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> S .<_ ( R .\/ S ) ) |
34 |
|
hlcvl |
|- ( K e. HL -> K e. CvLat ) |
35 |
34
|
3ad2ant1 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> K e. CvLat ) |
36 |
|
simp31 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> R .<_ ( P .\/ Q ) ) |
37 |
|
simp32 |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
38 |
|
nbrne2 |
|- ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S ) |
39 |
36 37 38
|
syl2anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> R =/= S ) |
40 |
1 2 4
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( R e. A /\ T e. A /\ S e. A ) /\ R =/= S ) -> ( R .<_ ( S .\/ T ) -> T .<_ ( S .\/ R ) ) ) |
41 |
35 15 19 16 39 40
|
syl131anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( R .<_ ( S .\/ T ) -> T .<_ ( S .\/ R ) ) ) |
42 |
22 41
|
mpd |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> T .<_ ( S .\/ R ) ) |
43 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) = ( S .\/ R ) ) |
44 |
14 15 16 43
|
syl3anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( R .\/ S ) = ( S .\/ R ) ) |
45 |
42 44
|
breqtrrd |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> T .<_ ( R .\/ S ) ) |
46 |
11 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
47 |
19 46
|
syl |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> T e. ( Base ` K ) ) |
48 |
11 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( R .\/ S ) /\ T .<_ ( R .\/ S ) ) <-> ( S .\/ T ) .<_ ( R .\/ S ) ) ) |
49 |
13 28 47 18 48
|
syl13anc |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( ( S .<_ ( R .\/ S ) /\ T .<_ ( R .\/ S ) ) <-> ( S .\/ T ) .<_ ( R .\/ S ) ) ) |
50 |
33 45 49
|
mpbi2and |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) .<_ ( R .\/ S ) ) |
51 |
11 1 13 18 21 31 50
|
latasymd |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( R .\/ S ) = ( S .\/ T ) ) |
52 |
51
|
oveq1d |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> ( ( R .\/ S ) ./\ W ) = ( ( S .\/ T ) ./\ W ) ) |
53 |
9 52
|
eqtrid |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> D = ( ( S .\/ T ) ./\ W ) ) |