Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> K e. HL ) |
12 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R e. A ) |
13 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> S e. A ) |
14 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> T e. A ) |
15 |
|
simp33l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R .<_ ( P .\/ Q ) ) |
16 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
17 |
|
simp33r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> R .<_ ( S .\/ T ) ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
cdleme19a |
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) -> D = ( ( S .\/ T ) ./\ W ) ) |
19 |
11 12 13 14 15 16 17 18
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D = ( ( S .\/ T ) ./\ W ) ) |
20 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
22 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
23 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
24 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
25 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( P =/= Q /\ S =/= T ) ) |
26 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
27 |
1 2 3 4 5 6 7 8
|
cdleme16 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
28 |
20 21 22 23 24 25 16 26 27
|
syl332anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
29 |
19 28
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D = ( ( F .\/ G ) ./\ W ) ) |
30 |
11
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> K e. Lat ) |
31 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> W e. H ) |
32 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> P e. A ) |
33 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> Q e. A ) |
34 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
35 |
1 2 3 4 5 6 7 34
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) ) |
36 |
11 31 32 33 13 35
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> F e. ( Base ` K ) ) |
37 |
1 2 3 4 5 6 8 34
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) ) |
38 |
11 31 32 33 14 37
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> G e. ( Base ` K ) ) |
39 |
34 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ G e. ( Base ` K ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
40 |
30 36 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
41 |
34 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
42 |
31 41
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> W e. ( Base ` K ) ) |
43 |
34 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( F .\/ G ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) ) |
44 |
30 40 42 43
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) ) |
45 |
29 44
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> D .<_ ( F .\/ G ) ) |