Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114,
line 3. D , F , N , Y , G , O represent s_2,
f(s), f_s(r), t_2, f(t), f_t(r). We prove that if r <_ s \/
t, then f_t(r) = f_t(r). (Contributed by NM, 14-Nov-2012)
Ref
Expression
Hypotheses
cdleme19.l
|- .<_ = ( le ` K )
cdleme19.j
|- .\/ = ( join ` K )
cdleme19.m
|- ./\ = ( meet ` K )
cdleme19.a
|- A = ( Atoms ` K )
cdleme19.h
|- H = ( LHyp ` K )
cdleme19.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme19.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme19.g
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> N = O )
Proof
Step
Hyp
Ref
Expression
1
cdleme19.l
|- .<_ = ( le ` K )
2
cdleme19.j
|- .\/ = ( join ` K )
3
cdleme19.m
|- ./\ = ( meet ` K )
4
cdleme19.a
|- A = ( Atoms ` K )
5
cdleme19.h
|- H = ( LHyp ` K )
6
cdleme19.u
|- U = ( ( P .\/ Q ) ./\ W )
7
cdleme19.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
8
cdleme19.g
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( F .\/ D ) = ( G .\/ Y ) )
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ D ) ) = ( ( P .\/ Q ) ./\ ( G .\/ Y ) ) )
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ R e. A ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ ( R .<_ ( P .\/ Q ) /\ R .<_ ( S .\/ T ) ) ) ) -> N = O )