Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
12 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
13 |
12
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
14 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
17 |
14 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) ) |
18 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
19 |
15 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
20 |
18 19
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) ) |
21 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. A ) |
22 |
15 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
23 |
21 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. ( Base ` K ) ) |
24 |
15 2
|
latj31 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ R e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( S .\/ R ) .\/ T ) = ( ( T .\/ R ) .\/ S ) ) |
25 |
13 17 20 23 24
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ R ) .\/ T ) = ( ( T .\/ R ) .\/ S ) ) |
26 |
25
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ R ) .\/ T ) ./\ W ) = ( ( ( T .\/ R ) .\/ S ) ./\ W ) ) |
27 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
28 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ W ) |
29 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
30 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20aN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ D ) = ( ( ( S .\/ R ) .\/ T ) ./\ W ) ) |
32 |
12 27 18 14 28 21 29 30 31
|
syl233anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ D ) = ( ( ( S .\/ R ) .\/ T ) ./\ W ) ) |
33 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) = ( T .\/ S ) ) |
34 |
12 14 21 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ T ) = ( T .\/ S ) ) |
35 |
34
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( T .\/ S ) ./\ W ) ) |
36 |
11 35
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> V = ( ( T .\/ S ) ./\ W ) ) |
37 |
36
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ Y ) = ( ( ( T .\/ S ) ./\ W ) .\/ Y ) ) |
38 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. T .<_ W ) |
39 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
40 |
|
eqid |
|- ( ( T .\/ S ) ./\ W ) = ( ( T .\/ S ) ./\ W ) |
41 |
1 2 3 4 5 6 8 7 10 9 40
|
cdleme20aN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ T e. A /\ -. T .<_ W ) /\ ( S e. A /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( T .\/ S ) ./\ W ) .\/ Y ) = ( ( ( T .\/ R ) .\/ S ) ./\ W ) ) |
42 |
12 27 18 21 38 14 39 30 41
|
syl233anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( T .\/ S ) ./\ W ) .\/ Y ) = ( ( ( T .\/ R ) .\/ S ) ./\ W ) ) |
43 |
37 42
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ Y ) = ( ( ( T .\/ R ) .\/ S ) ./\ W ) ) |
44 |
26 32 43
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( V .\/ D ) = ( V .\/ Y ) ) |