Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
12 |
9 10
|
oveq12i |
|- ( D .\/ Y ) = ( ( ( R .\/ S ) ./\ W ) .\/ ( ( R .\/ T ) ./\ W ) ) |
13 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
14 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
15 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
18 |
13 14 15 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
19 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
20 |
16 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
21 |
19 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
22 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> R .<_ ( R .\/ S ) ) |
23 |
13 14 15 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( R .\/ S ) ) |
24 |
16 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( R .\/ S ) ) -> ( ( ( R .\/ S ) ./\ W ) .\/ R ) = ( ( R .\/ S ) ./\ ( W .\/ R ) ) ) |
25 |
13 14 18 21 23 24
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ S ) ./\ W ) .\/ R ) = ( ( R .\/ S ) ./\ ( W .\/ R ) ) ) |
26 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
27 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
28 |
1 2 27 4 5
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( W .\/ R ) = ( 1. ` K ) ) |
29 |
13 19 26 28
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( W .\/ R ) = ( 1. ` K ) ) |
30 |
29
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( W .\/ R ) ) = ( ( R .\/ S ) ./\ ( 1. ` K ) ) ) |
31 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
32 |
13 31
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. OL ) |
33 |
16 3 27
|
olm11 |
|- ( ( K e. OL /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
34 |
32 18 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
35 |
25 30 34
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) = ( ( ( R .\/ S ) ./\ W ) .\/ R ) ) |
36 |
35
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) .\/ T ) = ( ( ( ( R .\/ S ) ./\ W ) .\/ R ) .\/ T ) ) |
37 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ W ) |
38 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
39 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
40 |
|
eqid |
|- ( ( R .\/ S ) ./\ W ) = ( ( R .\/ S ) ./\ W ) |
41 |
1 2 3 4 5 40
|
cdlemeda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( R e. A /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. A ) |
42 |
13 19 15 37 14 38 39 41
|
syl223anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. A ) |
43 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. A ) |
44 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( ( ( R .\/ S ) ./\ W ) e. A /\ R e. A /\ T e. A ) ) -> ( ( ( ( R .\/ S ) ./\ W ) .\/ R ) .\/ T ) = ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ) |
45 |
13 42 14 43 44
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( ( R .\/ S ) ./\ W ) .\/ R ) .\/ T ) = ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ) |
46 |
36 45
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) .\/ T ) = ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ) |
47 |
46
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ S ) .\/ T ) ./\ W ) = ( ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ./\ W ) ) |
48 |
16 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ T e. A ) -> ( R .\/ T ) e. ( Base ` K ) ) |
49 |
13 14 43 48
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ T ) e. ( Base ` K ) ) |
50 |
13
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
51 |
16 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
52 |
50 18 21 51
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) .<_ W ) |
53 |
16 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( ( ( R .\/ S ) ./\ W ) e. A /\ ( R .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( ( R .\/ S ) ./\ W ) .<_ W ) -> ( ( ( R .\/ S ) ./\ W ) .\/ ( ( R .\/ T ) ./\ W ) ) = ( ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ./\ W ) ) |
54 |
13 42 49 21 52 53
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ S ) ./\ W ) .\/ ( ( R .\/ T ) ./\ W ) ) = ( ( ( ( R .\/ S ) ./\ W ) .\/ ( R .\/ T ) ) ./\ W ) ) |
55 |
47 54
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ S ) .\/ T ) ./\ W ) = ( ( ( R .\/ S ) ./\ W ) .\/ ( ( R .\/ T ) ./\ W ) ) ) |
56 |
12 55
|
eqtr4id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( D .\/ Y ) = ( ( ( R .\/ S ) .\/ T ) ./\ W ) ) |