| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
| 10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
| 11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
| 12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
| 13 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 14 |
12 13
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. OL ) |
| 15 |
12
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
| 16 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
| 17 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> P e. A ) |
| 18 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
| 19 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
| 20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 21 |
1 2 3 4 5 6 7 20
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) ) |
| 22 |
12 16 17 18 19 21
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> F e. ( Base ` K ) ) |
| 23 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. A ) |
| 24 |
1 2 3 4 5 6 8 20
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> G e. ( Base ` K ) ) |
| 25 |
12 16 17 18 23 24
|
syl23anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> G e. ( Base ` K ) ) |
| 26 |
20 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ G e. ( Base ` K ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
| 27 |
15 22 25 26
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
| 28 |
20 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 29 |
16 28
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
| 30 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
| 31 |
20 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 32 |
12 30 19 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 33 |
20 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 34 |
23 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. ( Base ` K ) ) |
| 35 |
20 2
|
latjcl |
|- ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) ) |
| 36 |
15 32 34 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) ) |
| 37 |
20 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( F .\/ G ) e. ( Base ` K ) /\ W e. ( Base ` K ) /\ ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) ) ) -> ( ( ( F .\/ G ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( ( F .\/ G ) ./\ ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) ) |
| 38 |
14 27 29 36 37
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( F .\/ G ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( ( F .\/ G ) ./\ ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) ) |
| 39 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> S .<_ ( R .\/ S ) ) |
| 40 |
12 30 19 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> S .<_ ( R .\/ S ) ) |
| 41 |
20 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 42 |
19 41
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) ) |
| 43 |
20 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( S .<_ ( R .\/ S ) -> ( S .\/ T ) .<_ ( ( R .\/ S ) .\/ T ) ) ) |
| 44 |
15 42 32 34 43
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .<_ ( R .\/ S ) -> ( S .\/ T ) .<_ ( ( R .\/ S ) .\/ T ) ) ) |
| 45 |
40 44
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ T ) .<_ ( ( R .\/ S ) .\/ T ) ) |
| 46 |
20 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 47 |
12 19 23 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 48 |
20 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. ( Base ` K ) /\ ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) ) -> ( ( S .\/ T ) .<_ ( ( R .\/ S ) .\/ T ) <-> ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( S .\/ T ) ) ) |
| 49 |
15 47 36 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) .<_ ( ( R .\/ S ) .\/ T ) <-> ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( S .\/ T ) ) ) |
| 50 |
45 49
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( S .\/ T ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) ./\ W ) = ( ( S .\/ T ) ./\ W ) ) |
| 52 |
11 51
|
eqtr4id |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> V = ( ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) ./\ W ) ) |
| 53 |
20 3
|
latm32 |
|- ( ( K e. OL /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) ./\ W ) = ( ( ( S .\/ T ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 54 |
14 47 36 29 53
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) ./\ W ) = ( ( ( S .\/ T ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 55 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
| 56 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
| 57 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
| 58 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P =/= Q /\ S =/= T ) ) |
| 59 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
| 60 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
| 61 |
1 2 3 4 5 6 7 8
|
cdleme16 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
| 62 |
55 56 57 58 59 60 61
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) = ( ( ( F .\/ G ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 64 |
54 63
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( S .\/ T ) ./\ ( ( R .\/ S ) .\/ T ) ) ./\ W ) = ( ( ( F .\/ G ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 65 |
52 64
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> V = ( ( ( F .\/ G ) ./\ W ) ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 66 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 67 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
| 68 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ T e. A ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( D .\/ Y ) = ( ( ( R .\/ S ) .\/ T ) ./\ W ) ) |
| 69 |
12 16 66 56 23 59 67 68
|
syl232anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( D .\/ Y ) = ( ( ( R .\/ S ) .\/ T ) ./\ W ) ) |
| 70 |
20 3
|
latmcom |
|- ( ( K e. Lat /\ ( ( R .\/ S ) .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( ( R .\/ S ) .\/ T ) ./\ W ) = ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 71 |
15 36 29 70
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ S ) .\/ T ) ./\ W ) = ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 72 |
69 71
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( D .\/ Y ) = ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) |
| 73 |
72
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) = ( ( F .\/ G ) ./\ ( W ./\ ( ( R .\/ S ) .\/ T ) ) ) ) |
| 74 |
38 65 73
|
3eqtr4rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) = V ) |