| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
| 10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
| 11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) = V ) |
| 13 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
| 14 |
13
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
| 15 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
| 16 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> T e. A ) |
| 17 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 18 |
17 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 19 |
13 15 16 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 20 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
| 21 |
17 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
| 23 |
17 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( S .\/ T ) ./\ W ) .<_ ( S .\/ T ) ) |
| 24 |
14 19 22 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) .<_ ( S .\/ T ) ) |
| 25 |
11 24
|
eqbrtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> V .<_ ( S .\/ T ) ) |
| 26 |
12 25
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( F .\/ G ) ./\ ( D .\/ Y ) ) .<_ ( S .\/ T ) ) |