Metamath Proof Explorer


Theorem cdleme20l

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, penultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t) respectively. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l
|- .<_ = ( le ` K )
cdleme19.j
|- .\/ = ( join ` K )
cdleme19.m
|- ./\ = ( meet ` K )
cdleme19.a
|- A = ( Atoms ` K )
cdleme19.h
|- H = ( LHyp ` K )
cdleme19.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme19.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme19.g
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
cdleme19.d
|- D = ( ( R .\/ S ) ./\ W )
cdleme19.y
|- Y = ( ( R .\/ T ) ./\ W )
cdleme20.v
|- V = ( ( S .\/ T ) ./\ W )
Assertion cdleme20l
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) = ( ( P .\/ Q ) ./\ ( F .\/ D ) ) )

Proof

Step Hyp Ref Expression
1 cdleme19.l
 |-  .<_ = ( le ` K )
2 cdleme19.j
 |-  .\/ = ( join ` K )
3 cdleme19.m
 |-  ./\ = ( meet ` K )
4 cdleme19.a
 |-  A = ( Atoms ` K )
5 cdleme19.h
 |-  H = ( LHyp ` K )
6 cdleme19.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme19.f
 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
8 cdleme19.g
 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
9 cdleme19.d
 |-  D = ( ( R .\/ S ) ./\ W )
10 cdleme19.y
 |-  Y = ( ( R .\/ T ) ./\ W )
11 cdleme20.v
 |-  V = ( ( S .\/ T ) ./\ W )
12 1 2 3 4 5 6 7 8 9 10 11 cdleme20i
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) .<_ ( P .\/ Q ) )
13 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> K e. HL )
14 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( K e. HL /\ W e. H ) )
15 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
16 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
17 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> R e. A )
18 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> S e. A )
19 simp22r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. S .<_ W )
20 simp31l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> P =/= Q )
21 simp321
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. S .<_ ( P .\/ Q ) )
22 simp323
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> R .<_ ( P .\/ Q ) )
23 1 2 3 4 5 6 7 8 9 10 11 cdleme20l1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ D ) e. ( LLines ` K ) )
24 14 15 16 17 18 19 20 21 22 23 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( F .\/ D ) e. ( LLines ` K ) )
25 simp23l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> T e. A )
26 simp23r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. T .<_ W )
27 simp322
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> -. T .<_ ( P .\/ Q ) )
28 eqid
 |-  ( ( T .\/ S ) ./\ W ) = ( ( T .\/ S ) ./\ W )
29 1 2 3 4 5 6 8 7 10 9 28 cdleme20l1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( G .\/ Y ) e. ( LLines ` K ) )
30 14 15 16 17 25 26 20 27 22 29 syl333anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( G .\/ Y ) e. ( LLines ` K ) )
31 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> P e. A )
32 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> Q e. A )
33 eqid
 |-  ( LLines ` K ) = ( LLines ` K )
34 2 4 33 llni2
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) )
35 13 31 32 20 34 syl31anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( P .\/ Q ) e. ( LLines ` K ) )
36 1 2 3 4 5 6 7 8 9 10 11 cdleme20l2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) e. A )
37 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( S e. A /\ -. S .<_ W ) )
38 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( R e. A /\ -. R .<_ W ) )
39 1 2 3 4 5 6 7 8 9 10 11 cdleme20k
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ D ) =/= ( P .\/ Q ) )
40 14 31 32 37 38 21 22 39 syl322anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( F .\/ D ) =/= ( P .\/ Q ) )
41 1 2 3 4 33 llnexchb2
 |-  ( ( K e. HL /\ ( ( F .\/ D ) e. ( LLines ` K ) /\ ( G .\/ Y ) e. ( LLines ` K ) /\ ( P .\/ Q ) e. ( LLines ` K ) ) /\ ( ( ( F .\/ D ) ./\ ( G .\/ Y ) ) e. A /\ ( F .\/ D ) =/= ( P .\/ Q ) ) ) -> ( ( ( F .\/ D ) ./\ ( G .\/ Y ) ) .<_ ( P .\/ Q ) <-> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) = ( ( F .\/ D ) ./\ ( P .\/ Q ) ) ) )
42 13 24 30 35 36 40 41 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( ( F .\/ D ) ./\ ( G .\/ Y ) ) .<_ ( P .\/ Q ) <-> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) = ( ( F .\/ D ) ./\ ( P .\/ Q ) ) ) )
43 12 42 mpbid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) = ( ( F .\/ D ) ./\ ( P .\/ Q ) ) )
44 13 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> K e. Lat )
45 eqid
 |-  ( Base ` K ) = ( Base ` K )
46 45 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
47 13 31 32 46 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
48 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> W e. H )
49 1 2 3 4 5 6 7 45 cdleme1b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) )
50 13 48 31 32 18 49 syl23anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> F e. ( Base ` K ) )
51 1 2 3 4 5 9 45 cdlemedb
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ S e. A ) ) -> D e. ( Base ` K ) )
52 13 48 17 18 51 syl22anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> D e. ( Base ` K ) )
53 45 2 latjcl
 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ D e. ( Base ` K ) ) -> ( F .\/ D ) e. ( Base ` K ) )
54 44 50 52 53 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( F .\/ D ) e. ( Base ` K ) )
55 45 3 latmcom
 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ D ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ D ) ) = ( ( F .\/ D ) ./\ ( P .\/ Q ) ) )
56 44 47 54 55 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ D ) ) = ( ( F .\/ D ) ./\ ( P .\/ Q ) ) )
57 43 56 eqtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) /\ ( -. R .<_ ( S .\/ T ) /\ -. U .<_ ( S .\/ T ) ) ) ) -> ( ( F .\/ D ) ./\ ( G .\/ Y ) ) = ( ( P .\/ Q ) ./\ ( F .\/ D ) ) )