Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme19.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme19.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme19.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme19.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme19.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme19.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme19.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
cdleme19.d |
|- D = ( ( R .\/ S ) ./\ W ) |
10 |
|
cdleme19.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
11 |
|
cdleme20.v |
|- V = ( ( S .\/ T ) ./\ W ) |
12 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
13 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
15 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
16 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A ) |
17 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ W ) |
18 |
16 17
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
19 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
20 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
21 |
1 2 3 4 5 6 7
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F e. A ) |
22 |
13 14 15 18 19 20 21
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> F e. A ) |
23 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
24 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
25 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) ) |
26 |
1 2 3 4 5 9
|
cdlemeda |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( R e. A /\ R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> D e. A ) |
27 |
12 23 16 17 24 25 20 26
|
syl223anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> D e. A ) |
28 |
1 2 3 4 5 6 7 7 9 9
|
cdleme19c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F =/= D ) |
29 |
12 23 14 15 18 24 19 20 28
|
syl233anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> F =/= D ) |
30 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
31 |
2 4 30
|
llni2 |
|- ( ( ( K e. HL /\ F e. A /\ D e. A ) /\ F =/= D ) -> ( F .\/ D ) e. ( LLines ` K ) ) |
32 |
12 22 27 29 31
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ D ) e. ( LLines ` K ) ) |