Metamath Proof Explorer


Theorem cdleme20y

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses cdleme20z.l
|- .<_ = ( le ` K )
cdleme20z.j
|- .\/ = ( join ` K )
cdleme20z.m
|- ./\ = ( meet ` K )
cdleme20z.a
|- A = ( Atoms ` K )
Assertion cdleme20y
|- ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> ( ( S .\/ R ) ./\ ( T .\/ R ) ) = R )

Proof

Step Hyp Ref Expression
1 cdleme20z.l
 |-  .<_ = ( le ` K )
2 cdleme20z.j
 |-  .\/ = ( join ` K )
3 cdleme20z.m
 |-  ./\ = ( meet ` K )
4 cdleme20z.a
 |-  A = ( Atoms ` K )
5 simp1
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> K e. HL )
6 simp22
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> S e. A )
7 simp23
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> T e. A )
8 simp21
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> R e. A )
9 simp3
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> ( S =/= T /\ -. R .<_ ( S .\/ T ) ) )
10 1 2 3 4 2llnma2rN
 |-  ( ( K e. HL /\ ( S e. A /\ T e. A /\ R e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> ( ( S .\/ R ) ./\ ( T .\/ R ) ) = R )
11 5 6 7 8 9 10 syl131anc
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( S =/= T /\ -. R .<_ ( S .\/ T ) ) ) -> ( ( S .\/ R ) ./\ ( T .\/ R ) ) = R )