Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme21.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme21.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme21.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme21.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme21.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme21.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
1 2 3 4 5 6
|
cdleme21c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. U .<_ ( S .\/ z ) ) |
8 |
7
|
3adant2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ U .<_ ( S .\/ T ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. U .<_ ( S .\/ z ) ) |
9 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ U .<_ ( S .\/ T ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> U .<_ ( S .\/ T ) ) |
10 |
|
oveq2 |
|- ( T = z -> ( S .\/ T ) = ( S .\/ z ) ) |
11 |
10
|
breq2d |
|- ( T = z -> ( U .<_ ( S .\/ T ) <-> U .<_ ( S .\/ z ) ) ) |
12 |
9 11
|
syl5ibcom |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ U .<_ ( S .\/ T ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( T = z -> U .<_ ( S .\/ z ) ) ) |
13 |
12
|
necon3bd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ U .<_ ( S .\/ T ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( -. U .<_ ( S .\/ z ) -> T =/= z ) ) |
14 |
8 13
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ U .<_ ( S .\/ T ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> T =/= z ) |