Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme21a.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme21a.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme21a.a |
|- A = ( Atoms ` K ) |
4 |
|
simp23 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
5 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> K e. HL ) |
6 |
|
hlcvl |
|- ( K e. HL -> K e. CvLat ) |
7 |
5 6
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> K e. CvLat ) |
8 |
|
simp3l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> z e. A ) |
9 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> Q e. A ) |
10 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> P e. A ) |
11 |
|
simp21 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> S e. A ) |
12 |
1 2 3
|
atnlej1 |
|- ( ( K e. HL /\ ( S e. A /\ P e. A /\ Q e. A ) /\ -. S .<_ ( P .\/ Q ) ) -> S =/= P ) |
13 |
12
|
necomd |
|- ( ( K e. HL /\ ( S e. A /\ P e. A /\ Q e. A ) /\ -. S .<_ ( P .\/ Q ) ) -> P =/= S ) |
14 |
5 11 10 9 4 13
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> P =/= S ) |
15 |
|
simp3r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ z ) = ( S .\/ z ) ) |
16 |
3 2
|
cvlsupr5 |
|- ( ( K e. CvLat /\ ( P e. A /\ S e. A /\ z e. A ) /\ ( P =/= S /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> z =/= P ) |
17 |
7 10 11 8 14 15 16
|
syl132anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> z =/= P ) |
18 |
1 2 3
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( z e. A /\ Q e. A /\ P e. A ) /\ z =/= P ) -> ( z .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ z ) ) ) |
19 |
7 8 9 10 17 18
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( z .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ z ) ) ) |
20 |
3 2
|
cvlsupr8 |
|- ( ( K e. CvLat /\ ( P e. A /\ S e. A /\ z e. A ) /\ ( P =/= S /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ S ) = ( P .\/ z ) ) |
21 |
7 10 11 8 14 15 20
|
syl132anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ S ) = ( P .\/ z ) ) |
22 |
21
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( Q .<_ ( P .\/ S ) <-> Q .<_ ( P .\/ z ) ) ) |
23 |
19 22
|
sylibrd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( z .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) |
24 |
|
simp22 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> P =/= Q ) |
25 |
24
|
necomd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> Q =/= P ) |
26 |
1 2 3
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( Q e. A /\ S e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ S ) -> S .<_ ( P .\/ Q ) ) ) |
27 |
7 9 11 10 25 26
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( Q .<_ ( P .\/ S ) -> S .<_ ( P .\/ Q ) ) ) |
28 |
23 27
|
syld |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( z .<_ ( P .\/ Q ) -> S .<_ ( P .\/ Q ) ) ) |
29 |
4 28
|
mtod |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ ( z e. A /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. z .<_ ( P .\/ Q ) ) |