| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme21.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme21.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme21.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme21.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme21.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme21.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme21.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme21g.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 9 |
|
cdleme21g.d |
|- D = ( ( R .\/ S ) ./\ W ) |
| 10 |
|
cdleme21g.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
| 11 |
|
cdleme21g.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ D ) ) |
| 12 |
|
cdleme21g.o |
|- O = ( ( P .\/ Q ) ./\ ( G .\/ Y ) ) |
| 13 |
|
eqid |
|- ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
| 14 |
|
eqid |
|- ( ( R .\/ z ) ./\ W ) = ( ( R .\/ z ) ./\ W ) |
| 15 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) |
| 16 |
1 2 3 4 5 6 7 13 9 14 11 15 8 10 12
|
cdleme21f |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) -> N = O ) |