Metamath Proof Explorer


Theorem cdleme21h

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l
|- .<_ = ( le ` K )
cdleme21.j
|- .\/ = ( join ` K )
cdleme21.m
|- ./\ = ( meet ` K )
cdleme21.a
|- A = ( Atoms ` K )
cdleme21.h
|- H = ( LHyp ` K )
cdleme21.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme21.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme21g.g
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
cdleme21g.d
|- D = ( ( R .\/ S ) ./\ W )
cdleme21g.y
|- Y = ( ( R .\/ T ) ./\ W )
cdleme21g.n
|- N = ( ( P .\/ Q ) ./\ ( F .\/ D ) )
cdleme21g.o
|- O = ( ( P .\/ Q ) ./\ ( G .\/ Y ) )
Assertion cdleme21h
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) -> ( E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) -> N = O ) )

Proof

Step Hyp Ref Expression
1 cdleme21.l
 |-  .<_ = ( le ` K )
2 cdleme21.j
 |-  .\/ = ( join ` K )
3 cdleme21.m
 |-  ./\ = ( meet ` K )
4 cdleme21.a
 |-  A = ( Atoms ` K )
5 cdleme21.h
 |-  H = ( LHyp ` K )
6 cdleme21.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme21.f
 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
8 cdleme21g.g
 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
9 cdleme21g.d
 |-  D = ( ( R .\/ S ) ./\ W )
10 cdleme21g.y
 |-  Y = ( ( R .\/ T ) ./\ W )
11 cdleme21g.n
 |-  N = ( ( P .\/ Q ) ./\ ( F .\/ D ) )
12 cdleme21g.o
 |-  O = ( ( P .\/ Q ) ./\ ( G .\/ Y ) )
13 simp11
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
14 simp12
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) )
15 simp13l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( R e. A /\ -. R .<_ W ) )
16 simp13r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) )
17 simp2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> z e. A )
18 simp3l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> -. z .<_ W )
19 simp3r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( P .\/ z ) = ( S .\/ z ) )
20 17 18 19 jca31
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) )
21 1 2 3 4 5 6 7 8 9 10 11 12 cdleme21g
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) /\ ( ( z e. A /\ -. z .<_ W ) /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) -> N = O )
22 13 14 15 16 20 21 syl113anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) /\ z e. A /\ ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) -> N = O )
23 22 rexlimdv3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( R .<_ ( P .\/ Q ) /\ U .<_ ( S .\/ T ) ) ) ) -> ( E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) -> N = O ) )