| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme21.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme21.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme21.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme21.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme21.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme21.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme21.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme21g.g | 
							 |-  G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme21g.d | 
							 |-  D = ( ( R .\/ S ) ./\ W )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme21g.y | 
							 |-  Y = ( ( R .\/ T ) ./\ W )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme21g.n | 
							 |-  N = ( ( P .\/ Q ) ./\ ( F .\/ D ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme21g.o | 
							 |-  O = ( ( P .\/ Q ) ./\ ( G .\/ Y ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							 |-  ( S = T -> ( S .\/ U ) = ( T .\/ U ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							 |-  ( S = T -> ( P .\/ S ) = ( P .\/ T ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							 |-  ( S = T -> ( ( P .\/ S ) ./\ W ) = ( ( P .\/ T ) ./\ W ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							 |-  ( S = T -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) = ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							oveq12d | 
							 |-  ( S = T -> ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) )  | 
						
						
							| 18 | 
							
								17 7 8
							 | 
							3eqtr4g | 
							 |-  ( S = T -> F = G )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq2 | 
							 |-  ( S = T -> ( R .\/ S ) = ( R .\/ T ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							 |-  ( S = T -> ( ( R .\/ S ) ./\ W ) = ( ( R .\/ T ) ./\ W ) )  | 
						
						
							| 21 | 
							
								20 9 10
							 | 
							3eqtr4g | 
							 |-  ( S = T -> D = Y )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							oveq12d | 
							 |-  ( S = T -> ( F .\/ D ) = ( G .\/ Y ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							 |-  ( S = T -> ( ( P .\/ Q ) ./\ ( F .\/ D ) ) = ( ( P .\/ Q ) ./\ ( G .\/ Y ) ) )  | 
						
						
							| 24 | 
							
								23 11 12
							 | 
							3eqtr4g | 
							 |-  ( S = T -> N = O )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq1d | 
							 |-  ( S = T -> ( N = O <-> O = O ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl11 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpl12 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl13 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( R e. A /\ -. R .<_ W ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( S e. A /\ -. S .<_ W ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( T e. A /\ -. T .<_ W ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl3l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> P =/= Q )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> S =/= T )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( P =/= Q /\ S =/= T ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpl3r | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 36 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cdleme21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> N = O )  | 
						
						
							| 37 | 
							
								26 27 28 29 30 31 34 35 36
							 | 
							syl332anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> N = O )  | 
						
						
							| 38 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> O = O )  | 
						
						
							| 39 | 
							
								25 37 38
							 | 
							pm2.61ne | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> N = O )  |