| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
| 6 |
|
simp1l |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> K e. HL ) |
| 7 |
|
simp1r1 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> S e. A ) |
| 8 |
|
simp1r2 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> T e. A ) |
| 9 |
|
simp1r3 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> S =/= T ) |
| 10 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
| 11 |
2 4 10
|
llni2 |
|- ( ( ( K e. HL /\ S e. A /\ T e. A ) /\ S =/= T ) -> ( S .\/ T ) e. ( LLines ` K ) ) |
| 12 |
6 7 8 9 11
|
syl31anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) e. ( LLines ` K ) ) |
| 13 |
4 10
|
llnneat |
|- ( ( K e. HL /\ ( S .\/ T ) e. ( LLines ` K ) ) -> -. ( S .\/ T ) e. A ) |
| 14 |
6 12 13
|
syl2anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> -. ( S .\/ T ) e. A ) |
| 15 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 16 |
15 10
|
llnn0 |
|- ( ( K e. HL /\ ( S .\/ T ) e. ( LLines ` K ) ) -> ( S .\/ T ) =/= ( 0. ` K ) ) |
| 17 |
6 12 16
|
syl2anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) =/= ( 0. ` K ) ) |
| 18 |
14 17
|
jca |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( -. ( S .\/ T ) e. A /\ ( S .\/ T ) =/= ( 0. ` K ) ) ) |
| 19 |
|
df-ne |
|- ( ( S .\/ T ) =/= ( 0. ` K ) <-> -. ( S .\/ T ) = ( 0. ` K ) ) |
| 20 |
19
|
anbi2i |
|- ( ( -. ( S .\/ T ) e. A /\ ( S .\/ T ) =/= ( 0. ` K ) ) <-> ( -. ( S .\/ T ) e. A /\ -. ( S .\/ T ) = ( 0. ` K ) ) ) |
| 21 |
|
pm4.56 |
|- ( ( -. ( S .\/ T ) e. A /\ -. ( S .\/ T ) = ( 0. ` K ) ) <-> -. ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 22 |
20 21
|
bitri |
|- ( ( -. ( S .\/ T ) e. A /\ ( S .\/ T ) =/= ( 0. ` K ) ) <-> -. ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 23 |
18 22
|
sylib |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> -. ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 24 |
|
simp3r2 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> S .<_ ( T .\/ V ) ) |
| 25 |
|
simp3l |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> V e. A ) |
| 26 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ T e. A /\ V e. A ) -> T .<_ ( T .\/ V ) ) |
| 27 |
6 8 25 26
|
syl3anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> T .<_ ( T .\/ V ) ) |
| 28 |
6
|
hllatd |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> K e. Lat ) |
| 29 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 30 |
29 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 31 |
7 30
|
syl |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> S e. ( Base ` K ) ) |
| 32 |
29 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
| 33 |
8 32
|
syl |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> T e. ( Base ` K ) ) |
| 34 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ V e. A ) -> ( T .\/ V ) e. ( Base ` K ) ) |
| 35 |
6 8 25 34
|
syl3anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( T .\/ V ) e. ( Base ` K ) ) |
| 36 |
29 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) ) |
| 37 |
28 31 33 35 36
|
syl13anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) ) |
| 38 |
24 27 37
|
mpbi2and |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) .<_ ( T .\/ V ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> ( S .\/ T ) .<_ ( T .\/ V ) ) |
| 40 |
|
simp3r3 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> S .<_ ( P .\/ Q ) ) |
| 41 |
40
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ Q ) ) |
| 42 |
|
simpr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> T .<_ ( P .\/ Q ) ) |
| 43 |
|
simp21 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> P e. A ) |
| 44 |
|
simp22 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> Q e. A ) |
| 45 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 46 |
6 43 44 45
|
syl3anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 47 |
29 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( P .\/ Q ) ) ) |
| 48 |
28 31 33 46 47
|
syl13anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( P .\/ Q ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> ( ( S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( P .\/ Q ) ) ) |
| 50 |
41 42 49
|
mpbi2and |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> ( S .\/ T ) .<_ ( P .\/ Q ) ) |
| 51 |
29 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 52 |
6 7 8 51
|
syl3anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 53 |
29 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ ( T .\/ V ) /\ ( S .\/ T ) .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) |
| 54 |
28 52 35 46 53
|
syl13anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( ( S .\/ T ) .<_ ( T .\/ V ) /\ ( S .\/ T ) .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) |
| 55 |
54
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> ( ( ( S .\/ T ) .<_ ( T .\/ V ) /\ ( S .\/ T ) .<_ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) |
| 56 |
39 50 55
|
mpbi2and |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ T .<_ ( P .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) |
| 57 |
56
|
ex |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( T .<_ ( P .\/ Q ) -> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) |
| 58 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 59 |
6 58
|
syl |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> K e. OP ) |
| 60 |
59
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> K e. OP ) |
| 61 |
52
|
adantr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
| 62 |
|
simprl |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A ) |
| 63 |
|
simprr |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) |
| 64 |
29 1 15 4
|
leat3 |
|- ( ( ( K e. OP /\ ( S .\/ T ) e. ( Base ` K ) /\ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A ) /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 65 |
60 61 62 63 64
|
syl31anc |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 66 |
65
|
exp32 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A -> ( ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) ) ) |
| 67 |
|
breq2 |
|- ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) -> ( ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) <-> ( S .\/ T ) .<_ ( 0. ` K ) ) ) |
| 68 |
67
|
biimpa |
|- ( ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) -> ( S .\/ T ) .<_ ( 0. ` K ) ) |
| 69 |
29 1 15
|
ople0 |
|- ( ( K e. OP /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( S .\/ T ) .<_ ( 0. ` K ) <-> ( S .\/ T ) = ( 0. ` K ) ) ) |
| 70 |
59 52 69
|
syl2anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( S .\/ T ) .<_ ( 0. ` K ) <-> ( S .\/ T ) = ( 0. ` K ) ) ) |
| 71 |
68 70
|
imbitrid |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) -> ( S .\/ T ) = ( 0. ` K ) ) ) |
| 72 |
71
|
imp |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( S .\/ T ) = ( 0. ` K ) ) |
| 73 |
72
|
olcd |
|- ( ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) /\ ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) /\ ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) |
| 74 |
73
|
exp32 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) -> ( ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) ) ) |
| 75 |
|
simp3r1 |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( T .\/ V ) =/= ( P .\/ Q ) ) |
| 76 |
2 3 15 4
|
2atmat0 |
|- ( ( ( K e. HL /\ T e. A /\ V e. A ) /\ ( P e. A /\ Q e. A /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A \/ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) ) ) |
| 77 |
6 8 25 43 44 75 76
|
syl33anc |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( ( T .\/ V ) ./\ ( P .\/ Q ) ) e. A \/ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) = ( 0. ` K ) ) ) |
| 78 |
66 74 77
|
mpjaod |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( ( S .\/ T ) .<_ ( ( T .\/ V ) ./\ ( P .\/ Q ) ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) ) |
| 79 |
57 78
|
syld |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> ( T .<_ ( P .\/ Q ) -> ( ( S .\/ T ) e. A \/ ( S .\/ T ) = ( 0. ` K ) ) ) ) |
| 80 |
23 79
|
mtod |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> -. T .<_ ( P .\/ Q ) ) |