Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
6 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> K e. Lat ) |
8 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> P e. A ) |
9 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> Q e. A ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
12 |
6 8 9 11
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
13 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> W e. H ) |
14 |
10 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
15 |
13 14
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
16 |
10 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
17 |
7 12 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
18 |
|
simp21r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> -. S .<_ W ) |
19 |
|
nbrne2 |
|- ( ( ( ( P .\/ Q ) ./\ W ) .<_ W /\ -. S .<_ W ) -> ( ( P .\/ Q ) ./\ W ) =/= S ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) =/= S ) |
21 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> S .<_ ( T .\/ V ) ) |
22 |
21
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S .<_ ( T .\/ V ) ) |
23 |
6
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> K e. HL ) |
24 |
13
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> W e. H ) |
25 |
|
simpl12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
26 |
|
simpl13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> Q e. A ) |
27 |
|
simp31l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> P =/= Q ) |
28 |
27
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> P =/= Q ) |
29 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> V e. A ) |
30 |
29
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> V e. A ) |
31 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> V .<_ W ) |
32 |
31
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> V .<_ W ) |
33 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> V .<_ ( P .\/ Q ) ) |
34 |
|
eqid |
|- ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) |
35 |
1 2 3 4 5 34
|
cdleme22aa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ V .<_ W /\ V .<_ ( P .\/ Q ) ) ) -> V = ( ( P .\/ Q ) ./\ W ) ) |
36 |
23 24 25 26 28 30 32 33 35
|
syl233anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> V = ( ( P .\/ Q ) ./\ W ) ) |
37 |
36
|
oveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( T .\/ V ) = ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
38 |
22 37
|
breqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S .<_ ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
39 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> S .<_ ( P .\/ Q ) ) |
40 |
39
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S .<_ ( P .\/ Q ) ) |
41 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> S e. A ) |
42 |
10 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
43 |
41 42
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> S e. ( Base ` K ) ) |
44 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> T e. A ) |
45 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> -. P .<_ W ) |
46 |
1 2 3 4 5
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> ( ( P .\/ Q ) ./\ W ) e. A ) |
47 |
6 13 8 45 9 27 46
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. A ) |
48 |
10 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ ( ( P .\/ Q ) ./\ W ) e. A ) -> ( T .\/ ( ( P .\/ Q ) ./\ W ) ) e. ( Base ` K ) ) |
49 |
6 44 47 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( T .\/ ( ( P .\/ Q ) ./\ W ) ) e. ( Base ` K ) ) |
50 |
10 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( T .\/ ( ( P .\/ Q ) ./\ W ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( T .\/ ( ( P .\/ Q ) ./\ W ) ) /\ S .<_ ( P .\/ Q ) ) <-> S .<_ ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) ) |
51 |
7 43 49 12 50
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( S .<_ ( T .\/ ( ( P .\/ Q ) ./\ W ) ) /\ S .<_ ( P .\/ Q ) ) <-> S .<_ ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) ) |
52 |
51
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( ( S .<_ ( T .\/ ( ( P .\/ Q ) ./\ W ) ) /\ S .<_ ( P .\/ Q ) ) <-> S .<_ ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) ) |
53 |
38 40 52
|
mpbi2and |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S .<_ ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) |
54 |
|
simp31r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> S =/= T ) |
55 |
41 44 54
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( S e. A /\ T e. A /\ S =/= T ) ) |
56 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( T .\/ V ) =/= ( P .\/ Q ) ) |
57 |
56 21 39
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) |
58 |
1 2 3 4 5
|
cdleme22b |
|- ( ( ( K e. HL /\ ( S e. A /\ T e. A /\ S =/= T ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( V e. A /\ ( ( T .\/ V ) =/= ( P .\/ Q ) /\ S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
59 |
6 55 8 9 27 29 57 58
|
syl232anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
60 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
61 |
6 60
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> K e. AtLat ) |
62 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
63 |
10 1 3 62 4
|
atnle |
|- ( ( K e. AtLat /\ T e. A /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( -. T .<_ ( P .\/ Q ) <-> ( T ./\ ( P .\/ Q ) ) = ( 0. ` K ) ) ) |
64 |
61 44 12 63
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( -. T .<_ ( P .\/ Q ) <-> ( T ./\ ( P .\/ Q ) ) = ( 0. ` K ) ) ) |
65 |
59 64
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( T ./\ ( P .\/ Q ) ) = ( 0. ` K ) ) |
66 |
65
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( T ./\ ( P .\/ Q ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( 0. ` K ) .\/ ( ( P .\/ Q ) ./\ W ) ) ) |
67 |
10 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
68 |
44 67
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> T e. ( Base ` K ) ) |
69 |
10 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
70 |
7 12 15 69
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
71 |
10 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( ( ( P .\/ Q ) ./\ W ) e. A /\ T e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) -> ( ( T ./\ ( P .\/ Q ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) |
72 |
6 47 68 12 70 71
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( T ./\ ( P .\/ Q ) ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) ) |
73 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
74 |
6 73
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> K e. OL ) |
75 |
10 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
76 |
7 12 15 75
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) |
77 |
10 2 62
|
olj02 |
|- ( ( K e. OL /\ ( ( P .\/ Q ) ./\ W ) e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ W ) ) |
78 |
74 76 77
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ W ) ) |
79 |
66 72 78
|
3eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ W ) ) |
80 |
79
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( ( T .\/ ( ( P .\/ Q ) ./\ W ) ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ W ) ) |
81 |
53 80
|
breqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S .<_ ( ( P .\/ Q ) ./\ W ) ) |
82 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ S e. A /\ ( ( P .\/ Q ) ./\ W ) e. A ) -> ( S .<_ ( ( P .\/ Q ) ./\ W ) <-> S = ( ( P .\/ Q ) ./\ W ) ) ) |
83 |
61 41 47 82
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( S .<_ ( ( P .\/ Q ) ./\ W ) <-> S = ( ( P .\/ Q ) ./\ W ) ) ) |
84 |
83
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( S .<_ ( ( P .\/ Q ) ./\ W ) <-> S = ( ( P .\/ Q ) ./\ W ) ) ) |
85 |
81 84
|
mpbid |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> S = ( ( P .\/ Q ) ./\ W ) ) |
86 |
85
|
eqcomd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) /\ V .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ W ) = S ) |
87 |
86
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( V .<_ ( P .\/ Q ) -> ( ( P .\/ Q ) ./\ W ) = S ) ) |
88 |
87
|
necon3ad |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> ( ( ( P .\/ Q ) ./\ W ) =/= S -> -. V .<_ ( P .\/ Q ) ) ) |
89 |
20 88
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( S e. A /\ -. S .<_ W ) /\ T e. A /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( S .<_ ( T .\/ V ) /\ S .<_ ( P .\/ Q ) ) /\ ( T .\/ V ) =/= ( P .\/ Q ) ) ) -> -. V .<_ ( P .\/ Q ) ) |