| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme22.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme22.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme22.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme22.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme22.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S .<_ ( T .\/ V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. HL )  | 
						
						
							| 8 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V e. A )  | 
						
						
							| 10 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ T e. A /\ V e. A ) -> T .<_ ( T .\/ V ) )  | 
						
						
							| 11 | 
							
								7 8 9 10
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T .<_ ( T .\/ V ) )  | 
						
						
							| 12 | 
							
								7
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. Lat )  | 
						
						
							| 13 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 15 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( T e. A -> T e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ V e. A ) -> ( T .\/ V ) e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								7 8 9 19
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T .\/ V ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								14 1 2
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) )  | 
						
						
							| 22 | 
							
								12 16 18 20 21
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) )  | 
						
						
							| 23 | 
							
								6 11 22
							 | 
							mpbi2and | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( S .\/ T ) .<_ ( T .\/ V ) )  | 
						
						
							| 24 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								7 13 8 24
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> W e. H )  | 
						
						
							| 27 | 
							
								14 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								14 1 3
							 | 
							latmlem1 | 
							 |-  ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( S .\/ T ) .<_ ( T .\/ V ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) ) )  | 
						
						
							| 30 | 
							
								12 25 20 28 29
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) .<_ ( T .\/ V ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) ) )  | 
						
						
							| 31 | 
							
								23 30
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T e. A /\ -. T .<_ W ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							 |-  ( 0. ` K ) = ( 0. ` K )  | 
						
						
							| 35 | 
							
								1 3 34 4 5
							 | 
							lhpmat | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) ) -> ( T ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 36 | 
							
								32 33 35
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T ./\ W ) .\/ V ) = ( ( 0. ` K ) .\/ V ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp23r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V .<_ W )  | 
						
						
							| 39 | 
							
								14 1 2 3 4
							 | 
							atmod4i1 | 
							 |-  ( ( K e. HL /\ ( V e. A /\ T e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ V .<_ W ) -> ( ( T ./\ W ) .\/ V ) = ( ( T .\/ V ) ./\ W ) )  | 
						
						
							| 40 | 
							
								7 9 18 28 38 39
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T ./\ W ) .\/ V ) = ( ( T .\/ V ) ./\ W ) )  | 
						
						
							| 41 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 42 | 
							
								7 41
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. OL )  | 
						
						
							| 43 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( V e. A -> V e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								9 43
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V e. ( Base ` K ) )  | 
						
						
							| 45 | 
							
								14 2 34
							 | 
							olj02 | 
							 |-  ( ( K e. OL /\ V e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ V ) = V )  | 
						
						
							| 46 | 
							
								42 44 45
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( 0. ` K ) .\/ V ) = V )  | 
						
						
							| 47 | 
							
								37 40 46
							 | 
							3eqtr3d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T .\/ V ) ./\ W ) = V )  | 
						
						
							| 48 | 
							
								31 47
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) .<_ V )  | 
						
						
							| 49 | 
							
								
							 | 
							hlatl | 
							 |-  ( K e. HL -> K e. AtLat )  | 
						
						
							| 50 | 
							
								7 49
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. AtLat )  | 
						
						
							| 51 | 
							
								
							 | 
							simp21r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> -. S .<_ W )  | 
						
						
							| 52 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S =/= T )  | 
						
						
							| 53 | 
							
								1 2 3 4 5
							 | 
							lhpat | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ S =/= T ) ) -> ( ( S .\/ T ) ./\ W ) e. A )  | 
						
						
							| 54 | 
							
								7 26 13 51 8 52 53
							 | 
							syl222anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) e. A )  | 
						
						
							| 55 | 
							
								1 4
							 | 
							atcmp | 
							 |-  ( ( K e. AtLat /\ ( ( S .\/ T ) ./\ W ) e. A /\ V e. A ) -> ( ( ( S .\/ T ) ./\ W ) .<_ V <-> ( ( S .\/ T ) ./\ W ) = V ) )  | 
						
						
							| 56 | 
							
								50 54 9 55
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( ( S .\/ T ) ./\ W ) .<_ V <-> ( ( S .\/ T ) ./\ W ) = V ) )  | 
						
						
							| 57 | 
							
								48 56
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) = V )  | 
						
						
							| 58 | 
							
								57
							 | 
							eqcomd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V = ( ( S .\/ T ) ./\ W ) )  |