Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
6 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S .<_ ( T .\/ V ) ) |
7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. HL ) |
8 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T e. A ) |
9 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V e. A ) |
10 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ T e. A /\ V e. A ) -> T .<_ ( T .\/ V ) ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T .<_ ( T .\/ V ) ) |
12 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. Lat ) |
13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S e. A ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
14 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
16 |
13 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S e. ( Base ` K ) ) |
17 |
14 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
18 |
8 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> T e. ( Base ` K ) ) |
19 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ V e. A ) -> ( T .\/ V ) e. ( Base ` K ) ) |
20 |
7 8 9 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T .\/ V ) e. ( Base ` K ) ) |
21 |
14 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) ) |
22 |
12 16 18 20 21
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .<_ ( T .\/ V ) /\ T .<_ ( T .\/ V ) ) <-> ( S .\/ T ) .<_ ( T .\/ V ) ) ) |
23 |
6 11 22
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( S .\/ T ) .<_ ( T .\/ V ) ) |
24 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
25 |
7 13 8 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
26 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> W e. H ) |
27 |
14 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
28 |
26 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> W e. ( Base ` K ) ) |
29 |
14 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( T .\/ V ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( S .\/ T ) .<_ ( T .\/ V ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) ) ) |
30 |
12 25 20 28 29
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) .<_ ( T .\/ V ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) ) ) |
31 |
23 30
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) .<_ ( ( T .\/ V ) ./\ W ) ) |
32 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
34 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
35 |
1 3 34 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) ) -> ( T ./\ W ) = ( 0. ` K ) ) |
36 |
32 33 35
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( T ./\ W ) = ( 0. ` K ) ) |
37 |
36
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T ./\ W ) .\/ V ) = ( ( 0. ` K ) .\/ V ) ) |
38 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V .<_ W ) |
39 |
14 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( V e. A /\ T e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ V .<_ W ) -> ( ( T ./\ W ) .\/ V ) = ( ( T .\/ V ) ./\ W ) ) |
40 |
7 9 18 28 38 39
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T ./\ W ) .\/ V ) = ( ( T .\/ V ) ./\ W ) ) |
41 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
42 |
7 41
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. OL ) |
43 |
14 4
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
44 |
9 43
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V e. ( Base ` K ) ) |
45 |
14 2 34
|
olj02 |
|- ( ( K e. OL /\ V e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ V ) = V ) |
46 |
42 44 45
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( 0. ` K ) .\/ V ) = V ) |
47 |
37 40 46
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( T .\/ V ) ./\ W ) = V ) |
48 |
31 47
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) .<_ V ) |
49 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
50 |
7 49
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> K e. AtLat ) |
51 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> -. S .<_ W ) |
52 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> S =/= T ) |
53 |
1 2 3 4 5
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ S =/= T ) ) -> ( ( S .\/ T ) ./\ W ) e. A ) |
54 |
7 26 13 51 8 52 53
|
syl222anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) e. A ) |
55 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ ( ( S .\/ T ) ./\ W ) e. A /\ V e. A ) -> ( ( ( S .\/ T ) ./\ W ) .<_ V <-> ( ( S .\/ T ) ./\ W ) = V ) ) |
56 |
50 54 9 55
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( ( S .\/ T ) ./\ W ) .<_ V <-> ( ( S .\/ T ) ./\ W ) = V ) ) |
57 |
48 56
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> ( ( S .\/ T ) ./\ W ) = V ) |
58 |
57
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V = ( ( S .\/ T ) ./\ W ) ) |