Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme22e.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme22e.f |
|- F = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
8 |
|
cdleme22e.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) ) |
9 |
|
cdleme22e.o |
|- O = ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) ) |
10 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> K e. HL ) |
11 |
10
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> K e. Lat ) |
12 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> P e. A ) |
13 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> Q e. A ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
16 |
10 12 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
17 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> W e. H ) |
18 |
|
simp33l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z e. A ) |
19 |
1 2 3 4 5 6 7 14
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> F e. ( Base ` K ) ) |
20 |
10 17 12 13 18 19
|
syl23anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> F e. ( Base ` K ) ) |
21 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> S e. A ) |
22 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ z e. A ) -> ( S .\/ z ) e. ( Base ` K ) ) |
23 |
10 21 18 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( S .\/ z ) e. ( Base ` K ) ) |
24 |
14 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
25 |
17 24
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> W e. ( Base ` K ) ) |
26 |
14 3
|
latmcl |
|- ( ( K e. Lat /\ ( S .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( S .\/ z ) ./\ W ) e. ( Base ` K ) ) |
27 |
11 23 25 26
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( S .\/ z ) ./\ W ) e. ( Base ` K ) ) |
28 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( S .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( S .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
29 |
11 20 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( F .\/ ( ( S .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
30 |
14 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) ) .<_ ( P .\/ Q ) ) |
31 |
11 16 29 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) ) .<_ ( P .\/ Q ) ) |
32 |
8 31
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> N .<_ ( P .\/ Q ) ) |
33 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
34 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
35 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> T e. A ) |
36 |
|
simp31 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( V e. A /\ V .<_ W ) ) |
37 |
|
simp32l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> P =/= Q ) |
38 |
|
simp32r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ V ) = ( P .\/ Q ) ) |
39 |
1 2 3 4 5 6
|
cdleme22a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ T e. A ) /\ ( ( V e. A /\ V .<_ W ) /\ P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) ) -> V = U ) |
40 |
33 34 13 35 36 37 38 39
|
syl133anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> V = U ) |
41 |
40
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( O .\/ V ) = ( O .\/ U ) ) |
42 |
9
|
oveq1i |
|- ( O .\/ U ) = ( ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) |
43 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> -. P .<_ W ) |
44 |
1 2 3 4 5 6
|
cdleme0a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
45 |
10 17 12 43 13 37 44
|
syl222anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> U e. A ) |
46 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ z e. A ) -> ( T .\/ z ) e. ( Base ` K ) ) |
47 |
10 35 18 46
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ z ) e. ( Base ` K ) ) |
48 |
14 3
|
latmcl |
|- ( ( K e. Lat /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) |
49 |
11 47 25 48
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) |
50 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
51 |
11 20 49 50
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( F .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
52 |
1 2 3 4 5 6
|
cdlemeulpq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |
53 |
10 17 12 13 52
|
syl22anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> U .<_ ( P .\/ Q ) ) |
54 |
14 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( P .\/ Q ) ) -> ( ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) ) |
55 |
10 45 16 51 53 54
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) ) |
56 |
42 55
|
eqtr2id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( O .\/ U ) ) |
57 |
41 56
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( O .\/ V ) = ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) ) |
58 |
40
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ V ) = ( T .\/ U ) ) |
59 |
38 58
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ Q ) = ( T .\/ U ) ) |
60 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
61 |
10 35 45 60
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
62 |
14 4
|
atbase |
|- ( z e. A -> z e. ( Base ` K ) ) |
63 |
18 62
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z e. ( Base ` K ) ) |
64 |
14 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) ) |
65 |
11 61 63 64
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) ) |
66 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( T e. A /\ U e. A /\ z e. A ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) ) |
67 |
10 35 45 18 66
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) ) |
68 |
14 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
69 |
45 68
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> U e. ( Base ` K ) ) |
70 |
14 2
|
latj32 |
|- ( ( K e. Lat /\ ( z e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
71 |
11 63 69 49 70
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
72 |
14 2
|
latj32 |
|- ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( F .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
73 |
11 20 49 69 72
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( F .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
74 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ z e. A ) -> ( P .\/ z ) e. ( Base ` K ) ) |
75 |
10 12 18 74
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ z ) e. ( Base ` K ) ) |
76 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ z e. A ) -> P .<_ ( P .\/ z ) ) |
77 |
10 12 18 76
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> P .<_ ( P .\/ z ) ) |
78 |
14 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ z ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) ) |
79 |
10 12 75 25 77 78
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) ) |
80 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
81 |
1 2 80 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
82 |
10 17 34 81
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
83 |
82
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ z ) ./\ ( P .\/ W ) ) = ( ( P .\/ z ) ./\ ( 1. ` K ) ) ) |
84 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
85 |
10 84
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> K e. OL ) |
86 |
14 3 80
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ z ) e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) ) |
87 |
85 75 86
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) ) |
88 |
79 83 87
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( P .\/ z ) ) |
89 |
88
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ z ) .\/ Q ) ) |
90 |
6
|
oveq2i |
|- ( Q .\/ U ) = ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) |
91 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
92 |
10 12 13 91
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> Q .<_ ( P .\/ Q ) ) |
93 |
14 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ Q .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
94 |
10 13 16 25 92 93
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
95 |
90 94
|
syl5eq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q .\/ U ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
96 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
97 |
1 2 80 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
98 |
10 17 96 97
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
99 |
98
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
100 |
14 3 80
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
101 |
85 16 100
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
102 |
95 99 101
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |
103 |
102
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
104 |
14 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
105 |
12 104
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> P e. ( Base ` K ) ) |
106 |
14 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) |
107 |
11 75 25 106
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) |
108 |
14 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
109 |
13 108
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> Q e. ( Base ` K ) ) |
110 |
14 2
|
latj32 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
111 |
11 105 107 109 110
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
112 |
103 111
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) ) |
113 |
2 4
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) ) |
114 |
10 12 13 18 113
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) ) |
115 |
89 112 114
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) ) |
116 |
14 2
|
latj32 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
117 |
11 109 69 107 116
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
118 |
115 117
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) |
119 |
118
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
120 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) |
121 |
11 16 63 120
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) |
122 |
14 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) ) |
123 |
11 16 63 122
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) ) |
124 |
14 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( z e. A /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) /\ z .<_ ( ( P .\/ Q ) .\/ z ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) ) |
125 |
10 18 69 121 123 124
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) ) |
126 |
7
|
oveq1i |
|- ( F .\/ U ) = ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) |
127 |
14 2 4
|
hlatjcl |
|- ( ( K e. HL /\ z e. A /\ U e. A ) -> ( z .\/ U ) e. ( Base ` K ) ) |
128 |
10 18 45 127
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ U ) e. ( Base ` K ) ) |
129 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
130 |
11 109 107 129
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) |
131 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ z e. A /\ U e. A ) -> U .<_ ( z .\/ U ) ) |
132 |
10 18 45 131
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> U .<_ ( z .\/ U ) ) |
133 |
14 1 2 3 4
|
atmod2i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( z .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( z .\/ U ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
134 |
10 45 128 130 132 133
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
135 |
126 134
|
syl5eq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( F .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) ) |
136 |
119 125 135
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( F .\/ U ) = ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) ) |
137 |
14 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) ) |
138 |
11 16 63 137
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) ) |
139 |
14 1 11 69 16 121 53 138
|
lattrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> U .<_ ( ( P .\/ Q ) .\/ z ) ) |
140 |
14 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) ) |
141 |
11 69 121 140
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) ) |
142 |
139 141
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) |
143 |
142
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( z .\/ U ) ) |
144 |
136 143
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( F .\/ U ) = ( z .\/ U ) ) |
145 |
144
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( F .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
146 |
73 145
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) ) |
147 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ z e. A ) -> z .<_ ( T .\/ z ) ) |
148 |
10 35 18 147
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z .<_ ( T .\/ z ) ) |
149 |
14 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( z e. A /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ z .<_ ( T .\/ z ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) ) |
150 |
10 18 47 25 148 149
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) ) |
151 |
|
simp33 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z e. A /\ -. z .<_ W ) ) |
152 |
1 2 80 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( z e. A /\ -. z .<_ W ) ) -> ( z .\/ W ) = ( 1. ` K ) ) |
153 |
10 17 151 152
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ W ) = ( 1. ` K ) ) |
154 |
153
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ z ) ./\ ( z .\/ W ) ) = ( ( T .\/ z ) ./\ ( 1. ` K ) ) ) |
155 |
150 154
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( 1. ` K ) ) ) |
156 |
14 3 80
|
olm11 |
|- ( ( K e. OL /\ ( T .\/ z ) e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) ) |
157 |
85 47 156
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) ) |
158 |
155 157
|
eqtr2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ z ) = ( z .\/ ( ( T .\/ z ) ./\ W ) ) ) |
159 |
158
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
160 |
71 146 159
|
3eqtr4rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
161 |
67 160
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
162 |
65 161
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ U ) .<_ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
163 |
59 162
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ Q ) .<_ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) |
164 |
14 2
|
latjcl |
|- ( ( K e. Lat /\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) |
165 |
11 51 69 164
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) |
166 |
14 1 3
|
latleeqm1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .<_ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) ) |
167 |
11 16 165 166
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) .<_ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) ) |
168 |
163 167
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ ( ( F .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) |
169 |
57 168
|
eqtr2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P .\/ Q ) = ( O .\/ V ) ) |
170 |
32 169
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> N .<_ ( O .\/ V ) ) |