| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme22.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme22.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme22.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme22.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme22.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme22eALT.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme22eALT.f | 
							 |-  F = ( ( y .\/ U ) ./\ ( Q .\/ ( ( P .\/ y ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme22eALT.g | 
							 |-  G = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme22eALT.n | 
							 |-  N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme22eALT.o | 
							 |-  O = ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. HL )  | 
						
						
							| 12 | 
							
								11
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. Lat )  | 
						
						
							| 13 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q e. A )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 16 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								11 13 14 16
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> W e. H )  | 
						
						
							| 19 | 
							
								
							 | 
							simp3ll | 
							 |-  ( ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> y e. A )  | 
						
						
							| 20 | 
							
								19
							 | 
							3ad2ant3 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> y e. A )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7 15
							 | 
							cdleme1b | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ y e. A ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								11 18 13 14 20 21
							 | 
							syl23anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> S e. A )  | 
						
						
							| 24 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ S e. A /\ y e. A ) -> ( S .\/ y ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								11 23 20 24
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( S .\/ y ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								15 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								18 26
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								15 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( S .\/ y ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								12 25 27 28
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								15 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( S .\/ y ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								12 22 29 30
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								15 1 3
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 33 | 
							
								12 17 31 32
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ y ) ./\ W ) ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 34 | 
							
								9 33
							 | 
							eqbrtrid | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> N .<_ ( P .\/ Q ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> T e. A )  | 
						
						
							| 37 | 
							
								
							 | 
							simp321 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V e. A )  | 
						
						
							| 38 | 
							
								
							 | 
							simp322 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V .<_ W )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							jca | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( V e. A /\ V .<_ W ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P =/= Q )  | 
						
						
							| 41 | 
							
								
							 | 
							simp323 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ V ) = ( P .\/ Q ) )  | 
						
						
							| 42 | 
							
								1 2 3 4 5 6
							 | 
							cdleme22a | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ T e. A ) /\ ( ( V e. A /\ V .<_ W ) /\ P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) ) -> V = U )  | 
						
						
							| 43 | 
							
								11 18 35 14 36 39 40 41 42
							 | 
							syl233anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> V = U )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( O .\/ V ) = ( O .\/ U ) )  | 
						
						
							| 45 | 
							
								10
							 | 
							oveq1i | 
							 |-  ( O .\/ U ) = ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U )  | 
						
						
							| 46 | 
							
								
							 | 
							simp21r | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> -. P .<_ W )  | 
						
						
							| 47 | 
							
								1 2 3 4 5 6
							 | 
							cdleme0a | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A )  | 
						
						
							| 48 | 
							
								11 18 13 46 14 40 47
							 | 
							syl222anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U e. A )  | 
						
						
							| 49 | 
							
								
							 | 
							simp3rl | 
							 |-  ( ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z e. A )  | 
						
						
							| 50 | 
							
								49
							 | 
							3ad2ant3 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z e. A )  | 
						
						
							| 51 | 
							
								1 2 3 4 5 6 8 15
							 | 
							cdleme1b | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> G e. ( Base ` K ) )  | 
						
						
							| 52 | 
							
								11 18 13 14 50 51
							 | 
							syl23anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> G e. ( Base ` K ) )  | 
						
						
							| 53 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ z e. A ) -> ( T .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 54 | 
							
								11 36 50 53
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 55 | 
							
								15 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 56 | 
							
								12 54 27 55
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 57 | 
							
								15 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ G e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 58 | 
							
								12 52 56 57
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 59 | 
							
								1 2 3 4 5 6
							 | 
							cdlemeulpq | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) )  | 
						
						
							| 60 | 
							
								11 18 13 14 59
							 | 
							syl22anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( P .\/ Q ) )  | 
						
						
							| 61 | 
							
								15 1 2 3 4
							 | 
							atmod2i1 | 
							 |-  ( ( K e. HL /\ ( U e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( P .\/ Q ) ) -> ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 62 | 
							
								11 48 17 58 60 61
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( ( P .\/ Q ) ./\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 63 | 
							
								45 62
							 | 
							eqtr2id | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( O .\/ U ) )  | 
						
						
							| 64 | 
							
								43
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ V ) = ( T .\/ U ) )  | 
						
						
							| 65 | 
							
								41 64
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) = ( T .\/ U ) )  | 
						
						
							| 66 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 67 | 
							
								11 36 48 66
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 68 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( z e. A -> z e. ( Base ` K ) )  | 
						
						
							| 69 | 
							
								50 68
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z e. ( Base ` K ) )  | 
						
						
							| 70 | 
							
								15 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) )  | 
						
						
							| 71 | 
							
								12 67 69 70
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) .<_ ( ( T .\/ U ) .\/ z ) )  | 
						
						
							| 72 | 
							
								2 4
							 | 
							hlatj32 | 
							 |-  ( ( K e. HL /\ ( T e. A /\ U e. A /\ z e. A ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) )  | 
						
						
							| 73 | 
							
								11 36 48 50 72
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( T .\/ z ) .\/ U ) )  | 
						
						
							| 74 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( U e. A -> U e. ( Base ` K ) )  | 
						
						
							| 75 | 
							
								48 74
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 76 | 
							
								15 2
							 | 
							latj32 | 
							 |-  ( ( K e. Lat /\ ( z e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 77 | 
							
								12 69 75 56 76
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 78 | 
							
								15 2
							 | 
							latj32 | 
							 |-  ( ( K e. Lat /\ ( G e. ( Base ` K ) /\ ( ( T .\/ z ) ./\ W ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 79 | 
							
								12 52 56 75 78
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 80 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ z e. A ) -> ( P .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 81 | 
							
								11 13 50 80
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 82 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ P e. A /\ z e. A ) -> P .<_ ( P .\/ z ) )  | 
						
						
							| 83 | 
							
								11 13 50 82
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P .<_ ( P .\/ z ) )  | 
						
						
							| 84 | 
							
								15 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ z ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) )  | 
						
						
							| 85 | 
							
								11 13 81 27 83 84
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ z ) ./\ ( P .\/ W ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 87 | 
							
								1 2 86 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 88 | 
							
								11 18 35 87
							 | 
							syl21anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ ( P .\/ W ) ) = ( ( P .\/ z ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 90 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 91 | 
							
								11 90
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> K e. OL )  | 
						
						
							| 92 | 
							
								15 3 86
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( P .\/ z ) e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) )  | 
						
						
							| 93 | 
							
								91 81 92
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ ( 1. ` K ) ) = ( P .\/ z ) )  | 
						
						
							| 94 | 
							
								85 89 93
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ ( ( P .\/ z ) ./\ W ) ) = ( P .\/ z ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ z ) .\/ Q ) )  | 
						
						
							| 96 | 
							
								6
							 | 
							oveq2i | 
							 |-  ( Q .\/ U ) = ( Q .\/ ( ( P .\/ Q ) ./\ W ) )  | 
						
						
							| 97 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) )  | 
						
						
							| 98 | 
							
								11 13 14 97
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q .<_ ( P .\/ Q ) )  | 
						
						
							| 99 | 
							
								15 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( Q e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ Q .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) )  | 
						
						
							| 100 | 
							
								11 14 17 27 98 99
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) )  | 
						
						
							| 101 | 
							
								96 100
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ U ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 103 | 
							
								1 2 86 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 104 | 
							
								11 18 102 103
							 | 
							syl21anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 106 | 
							
								15 3 86
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )  | 
						
						
							| 107 | 
							
								91 17 106
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) )  | 
						
						
							| 108 | 
							
								101 105 107
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ U ) = ( P .\/ Q ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 110 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 111 | 
							
								13 110
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 112 | 
							
								15 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 113 | 
							
								12 81 27 112
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 114 | 
							
								15 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 115 | 
							
								14 114
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 116 | 
							
								15 2
							 | 
							latj32 | 
							 |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 117 | 
							
								12 111 113 115 116
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) = ( ( P .\/ Q ) .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 118 | 
							
								109 117
							 | 
							eqtr4d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( P .\/ ( ( P .\/ z ) ./\ W ) ) .\/ Q ) )  | 
						
						
							| 119 | 
							
								2 4
							 | 
							hlatj32 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ z e. A ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) )  | 
						
						
							| 120 | 
							
								11 13 14 50 119
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( P .\/ z ) .\/ Q ) )  | 
						
						
							| 121 | 
							
								95 118 120
							 | 
							3eqtr4rd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 122 | 
							
								15 2
							 | 
							latj32 | 
							 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 123 | 
							
								12 115 75 113 122
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( Q .\/ U ) .\/ ( ( P .\/ z ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 124 | 
							
								121 123
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) = ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 126 | 
							
								15 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 127 | 
							
								12 17 69 126
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) )  | 
						
						
							| 128 | 
							
								15 1 2
							 | 
							latlej2 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) )  | 
						
						
							| 129 | 
							
								12 17 69 128
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z .<_ ( ( P .\/ Q ) .\/ z ) )  | 
						
						
							| 130 | 
							
								15 1 2 3 4
							 | 
							atmod1i1 | 
							 |-  ( ( K e. HL /\ ( z e. A /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) /\ z .<_ ( ( P .\/ Q ) .\/ z ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) )  | 
						
						
							| 131 | 
							
								11 50 75 127 129 130
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( ( z .\/ U ) ./\ ( ( P .\/ Q ) .\/ z ) ) )  | 
						
						
							| 132 | 
							
								8
							 | 
							oveq1i | 
							 |-  ( G .\/ U ) = ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U )  | 
						
						
							| 133 | 
							
								15 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ z e. A /\ U e. A ) -> ( z .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 134 | 
							
								11 50 48 133
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 135 | 
							
								15 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ z ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 136 | 
							
								12 115 113 135
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 137 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ z e. A /\ U e. A ) -> U .<_ ( z .\/ U ) )  | 
						
						
							| 138 | 
							
								11 50 48 137
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( z .\/ U ) )  | 
						
						
							| 139 | 
							
								15 1 2 3 4
							 | 
							atmod2i1 | 
							 |-  ( ( K e. HL /\ ( U e. A /\ ( z .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) e. ( Base ` K ) ) /\ U .<_ ( z .\/ U ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 140 | 
							
								11 48 134 136 138 139
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 141 | 
							
								132 140
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( ( z .\/ U ) ./\ ( ( Q .\/ ( ( P .\/ z ) ./\ W ) ) .\/ U ) ) )  | 
						
						
							| 142 | 
							
								125 131 141
							 | 
							3eqtr4rd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) )  | 
						
						
							| 143 | 
							
								15 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ z e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) )  | 
						
						
							| 144 | 
							
								12 17 69 143
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ z ) )  | 
						
						
							| 145 | 
							
								15 1 12 75 17 127 60 144
							 | 
							lattrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> U .<_ ( ( P .\/ Q ) .\/ z ) )  | 
						
						
							| 146 | 
							
								15 1 3
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ z ) e. ( Base ` K ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) )  | 
						
						
							| 147 | 
							
								12 75 127 146
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( U .<_ ( ( P .\/ Q ) .\/ z ) <-> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U ) )  | 
						
						
							| 148 | 
							
								145 147
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( U ./\ ( ( P .\/ Q ) .\/ z ) ) = U )  | 
						
						
							| 149 | 
							
								148
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( U ./\ ( ( P .\/ Q ) .\/ z ) ) ) = ( z .\/ U ) )  | 
						
						
							| 150 | 
							
								142 149
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( G .\/ U ) = ( z .\/ U ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 152 | 
							
								79 151
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) = ( ( z .\/ U ) .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 153 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ T e. A /\ z e. A ) -> z .<_ ( T .\/ z ) )  | 
						
						
							| 154 | 
							
								11 36 50 153
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> z .<_ ( T .\/ z ) )  | 
						
						
							| 155 | 
							
								15 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( z e. A /\ ( T .\/ z ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ z .<_ ( T .\/ z ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) )  | 
						
						
							| 156 | 
							
								11 50 54 27 154 155
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ ( ( T .\/ z ) ./\ W ) ) = ( ( T .\/ z ) ./\ ( z .\/ W ) ) )  | 
						
						
							| 157 | 
							
								
							 | 
							simp33r | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z e. A /\ -. z .<_ W ) )  | 
						
						
							| 158 | 
							
								1 2 86 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( z e. A /\ -. z .<_ W ) ) -> ( z .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 159 | 
							
								11 18 157 158
							 | 
							syl21anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( z .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ ( z .\/ W ) ) = ( ( T .\/ z ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 161 | 
							
								15 3 86
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( T .\/ z ) e. ( Base ` K ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) )  | 
						
						
							| 162 | 
							
								91 54 161
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) ./\ ( 1. ` K ) ) = ( T .\/ z ) )  | 
						
						
							| 163 | 
							
								156 160 162
							 | 
							3eqtrrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ z ) = ( z .\/ ( ( T .\/ z ) ./\ W ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( z .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 165 | 
							
								77 152 164
							 | 
							3eqtr4rd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ z ) .\/ U ) = ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 166 | 
							
								73 165
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( T .\/ U ) .\/ z ) = ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 167 | 
							
								71 166
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( T .\/ U ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 168 | 
							
								65 167
							 | 
							eqbrtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) )  | 
						
						
							| 169 | 
							
								15 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( G .\/ ( ( T .\/ z ) ./\ W ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 170 | 
							
								12 58 75 169
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 171 | 
							
								15 1 3
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) )  | 
						
						
							| 172 | 
							
								12 17 170 171
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) .<_ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) <-> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) ) )  | 
						
						
							| 173 | 
							
								168 172
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( ( P .\/ Q ) ./\ ( ( G .\/ ( ( T .\/ z ) ./\ W ) ) .\/ U ) ) = ( P .\/ Q ) )  | 
						
						
							| 174 | 
							
								44 63 173
							 | 
							3eqtr2rd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> ( P .\/ Q ) = ( O .\/ V ) )  | 
						
						
							| 175 | 
							
								34 174
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H /\ T e. A ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ P =/= Q ) /\ ( S e. A /\ ( V e. A /\ V .<_ W /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( ( y e. A /\ -. y .<_ W ) /\ ( z e. A /\ -. z .<_ W ) ) ) ) -> N .<_ ( O .\/ V ) )  |