Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme22.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme22.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme22.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme22.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme22g.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme22g.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme22g.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
9 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> K e. HL ) |
10 |
9
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> K e. Lat ) |
11 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
13 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
14 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
15 |
|
simp133 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> P =/= Q ) |
16 |
|
simp132 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
17 |
1 2 3 4 5 6 7
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> F e. A ) |
18 |
11 12 13 14 15 16 17
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> F e. A ) |
19 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( T e. A /\ -. T .<_ W ) ) |
20 |
|
simp131 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. T .<_ ( P .\/ Q ) ) |
21 |
1 2 3 4 5 6 8
|
cdleme3fa |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) ) ) -> G e. A ) |
22 |
11 12 13 19 15 20 21
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> G e. A ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
23 2 4
|
hlatjcl |
|- ( ( K e. HL /\ F e. A /\ G e. A ) -> ( F .\/ G ) e. ( Base ` K ) ) |
25 |
9 18 22 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( F .\/ G ) e. ( Base ` K ) ) |
26 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> W e. H ) |
27 |
23 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
28 |
26 27
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> W e. ( Base ` K ) ) |
29 |
23 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( F .\/ G ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) ) |
30 |
10 25 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( ( F .\/ G ) ./\ W ) .<_ ( F .\/ G ) ) |
31 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( V e. A /\ V .<_ W ) ) |
32 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( S =/= T /\ S .<_ ( T .\/ V ) ) ) |
33 |
1 2 3 4 5
|
cdleme22d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) ) -> V = ( ( S .\/ T ) ./\ W ) ) |
34 |
11 14 19 31 32 33
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> V = ( ( S .\/ T ) ./\ W ) ) |
35 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> S =/= T ) |
36 |
15 35
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( P =/= Q /\ S =/= T ) ) |
37 |
1 2 3 4 5 6 7 8
|
cdleme16 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ S =/= T ) ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
38 |
11 12 13 14 19 36 16 20 37
|
syl332anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( F .\/ G ) ./\ W ) ) |
39 |
34 38
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( ( F .\/ G ) ./\ W ) = V ) |
40 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ F e. A /\ G e. A ) -> ( F .\/ G ) = ( G .\/ F ) ) |
41 |
9 18 22 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( F .\/ G ) = ( G .\/ F ) ) |
42 |
30 39 41
|
3brtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> V .<_ ( G .\/ F ) ) |
43 |
|
hlcvl |
|- ( K e. HL -> K e. CvLat ) |
44 |
9 43
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> K e. CvLat ) |
45 |
|
simp33l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> V e. A ) |
46 |
|
simp33r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> V .<_ W ) |
47 |
1 2 3 4 5 6 8
|
cdleme3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ -. T .<_ ( P .\/ Q ) ) ) -> -. G .<_ W ) |
48 |
11 12 13 19 15 20 47
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> -. G .<_ W ) |
49 |
|
nbrne2 |
|- ( ( V .<_ W /\ -. G .<_ W ) -> V =/= G ) |
50 |
46 48 49
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> V =/= G ) |
51 |
1 2 4
|
cvlatexch1 |
|- ( ( K e. CvLat /\ ( V e. A /\ F e. A /\ G e. A ) /\ V =/= G ) -> ( V .<_ ( G .\/ F ) -> F .<_ ( G .\/ V ) ) ) |
52 |
44 45 18 22 50 51
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> ( V .<_ ( G .\/ F ) -> F .<_ ( G .\/ V ) ) ) |
53 |
42 52
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( T e. A /\ -. T .<_ W ) /\ ( -. T .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ P =/= Q ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S =/= T /\ S .<_ ( T .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> F .<_ ( G .\/ V ) ) |