| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme23.b |
|- B = ( Base ` K ) |
| 2 |
|
cdleme23.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdleme23.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdleme23.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdleme23.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdleme23.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdleme23.v |
|- V = ( ( S .\/ T ) ./\ ( X ./\ W ) ) |
| 8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> K e. HL ) |
| 9 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 10 |
8 9
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> K e. OL ) |
| 11 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S e. A ) |
| 12 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> T e. A ) |
| 13 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. B ) |
| 14 |
8 11 12 13
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ T ) e. B ) |
| 15 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> K e. Lat ) |
| 16 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> X e. B ) |
| 17 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> W e. H ) |
| 18 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 19 |
17 18
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> W e. B ) |
| 20 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
| 21 |
15 16 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( X ./\ W ) e. B ) |
| 22 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ ( S .\/ T ) e. B /\ ( X ./\ W ) e. B ) -> ( ( S .\/ T ) .\/ ( X ./\ W ) ) e. B ) |
| 23 |
15 14 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) .\/ ( X ./\ W ) ) e. B ) |
| 24 |
1 4
|
latmassOLD |
|- ( ( K e. OL /\ ( ( S .\/ T ) e. B /\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) e. B /\ W e. B ) ) -> ( ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) ./\ W ) = ( ( S .\/ T ) ./\ ( ( ( S .\/ T ) .\/ ( X ./\ W ) ) ./\ W ) ) ) |
| 25 |
10 14 23 19 24
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) ./\ W ) = ( ( S .\/ T ) ./\ ( ( ( S .\/ T ) .\/ ( X ./\ W ) ) ./\ W ) ) ) |
| 26 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. B /\ ( X ./\ W ) e. B ) -> ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) |
| 27 |
15 14 21 26
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) |
| 28 |
1 2 4
|
latleeqm1 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. B /\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) e. B ) -> ( ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ ( X ./\ W ) ) <-> ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) = ( S .\/ T ) ) ) |
| 29 |
15 14 23 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ ( X ./\ W ) ) <-> ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) = ( S .\/ T ) ) ) |
| 30 |
27 29
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) = ( S .\/ T ) ) |
| 31 |
30
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( S .\/ T ) ./\ ( ( S .\/ T ) .\/ ( X ./\ W ) ) ) ./\ W ) = ( ( S .\/ T ) ./\ W ) ) |
| 32 |
1 5
|
atbase |
|- ( S e. A -> S e. B ) |
| 33 |
11 32
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S e. B ) |
| 34 |
1 5
|
atbase |
|- ( T e. A -> T e. B ) |
| 35 |
12 34
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> T e. B ) |
| 36 |
1 3
|
latjjdir |
|- ( ( K e. Lat /\ ( S e. B /\ T e. B /\ ( X ./\ W ) e. B ) ) -> ( ( S .\/ T ) .\/ ( X ./\ W ) ) = ( ( S .\/ ( X ./\ W ) ) .\/ ( T .\/ ( X ./\ W ) ) ) ) |
| 37 |
15 33 35 21 36
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) .\/ ( X ./\ W ) ) = ( ( S .\/ ( X ./\ W ) ) .\/ ( T .\/ ( X ./\ W ) ) ) ) |
| 38 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ ( X ./\ W ) ) = X ) |
| 39 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( T .\/ ( X ./\ W ) ) = X ) |
| 40 |
38 39
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ ( X ./\ W ) ) .\/ ( T .\/ ( X ./\ W ) ) ) = ( X .\/ X ) ) |
| 41 |
1 3
|
latjidm |
|- ( ( K e. Lat /\ X e. B ) -> ( X .\/ X ) = X ) |
| 42 |
15 16 41
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( X .\/ X ) = X ) |
| 43 |
37 40 42
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) .\/ ( X ./\ W ) ) = X ) |
| 44 |
43
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( S .\/ T ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) ./\ ( ( ( S .\/ T ) .\/ ( X ./\ W ) ) ./\ W ) ) = ( ( S .\/ T ) ./\ ( X ./\ W ) ) ) |
| 46 |
25 31 45
|
3eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) ./\ W ) = ( ( S .\/ T ) ./\ ( X ./\ W ) ) ) |
| 47 |
|
simp12r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> -. S .<_ W ) |
| 48 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S =/= T ) |
| 49 |
2 3 4 5 6
|
lhpat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ S =/= T ) ) -> ( ( S .\/ T ) ./\ W ) e. A ) |
| 50 |
8 17 11 47 12 48 49
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) ./\ W ) e. A ) |
| 51 |
46 50
|
eqeltrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .\/ T ) ./\ ( X ./\ W ) ) e. A ) |
| 52 |
7 51
|
eqeltrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> V e. A ) |