| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme23.b |
|- B = ( Base ` K ) |
| 2 |
|
cdleme23.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdleme23.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdleme23.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdleme23.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdleme23.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdleme23.v |
|- V = ( ( S .\/ T ) ./\ ( X ./\ W ) ) |
| 8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> K e. HL ) |
| 9 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> K e. Lat ) |
| 10 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S e. A ) |
| 11 |
1 5
|
atbase |
|- ( S e. A -> S e. B ) |
| 12 |
10 11
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S e. B ) |
| 13 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> T e. A ) |
| 14 |
1 5
|
atbase |
|- ( T e. A -> T e. B ) |
| 15 |
13 14
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> T e. B ) |
| 16 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ S e. B /\ T e. B ) -> S .<_ ( S .\/ T ) ) |
| 17 |
9 12 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S .<_ ( S .\/ T ) ) |
| 18 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> X e. B ) |
| 19 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> W e. H ) |
| 20 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 21 |
19 20
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> W e. B ) |
| 22 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
| 23 |
9 18 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( X ./\ W ) e. B ) |
| 24 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ S e. B /\ ( X ./\ W ) e. B ) -> S .<_ ( S .\/ ( X ./\ W ) ) ) |
| 25 |
9 12 23 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S .<_ ( S .\/ ( X ./\ W ) ) ) |
| 26 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ ( X ./\ W ) ) = X ) |
| 27 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( T .\/ ( X ./\ W ) ) = X ) |
| 28 |
26 27
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ ( X ./\ W ) ) = ( T .\/ ( X ./\ W ) ) ) |
| 29 |
25 28
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S .<_ ( T .\/ ( X ./\ W ) ) ) |
| 30 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. B ) |
| 31 |
8 10 13 30
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ T ) e. B ) |
| 32 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ T e. B /\ ( X ./\ W ) e. B ) -> ( T .\/ ( X ./\ W ) ) e. B ) |
| 33 |
9 15 23 32
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( T .\/ ( X ./\ W ) ) e. B ) |
| 34 |
1 2 4
|
latlem12 |
|- ( ( K e. Lat /\ ( S e. B /\ ( S .\/ T ) e. B /\ ( T .\/ ( X ./\ W ) ) e. B ) ) -> ( ( S .<_ ( S .\/ T ) /\ S .<_ ( T .\/ ( X ./\ W ) ) ) <-> S .<_ ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) ) |
| 35 |
9 12 31 33 34
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( ( S .<_ ( S .\/ T ) /\ S .<_ ( T .\/ ( X ./\ W ) ) ) <-> S .<_ ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) ) |
| 36 |
17 29 35
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S .<_ ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) |
| 37 |
7
|
oveq2i |
|- ( T .\/ V ) = ( T .\/ ( ( S .\/ T ) ./\ ( X ./\ W ) ) ) |
| 38 |
1 2 3
|
latlej2 |
|- ( ( K e. Lat /\ S e. B /\ T e. B ) -> T .<_ ( S .\/ T ) ) |
| 39 |
9 12 15 38
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> T .<_ ( S .\/ T ) ) |
| 40 |
1 2 3 4 5
|
atmod3i1 |
|- ( ( K e. HL /\ ( T e. A /\ ( S .\/ T ) e. B /\ ( X ./\ W ) e. B ) /\ T .<_ ( S .\/ T ) ) -> ( T .\/ ( ( S .\/ T ) ./\ ( X ./\ W ) ) ) = ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) |
| 41 |
8 13 31 23 39 40
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( T .\/ ( ( S .\/ T ) ./\ ( X ./\ W ) ) ) = ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) |
| 42 |
37 41
|
eqtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> ( T .\/ V ) = ( ( S .\/ T ) ./\ ( T .\/ ( X ./\ W ) ) ) ) |
| 43 |
36 42
|
breqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( S =/= T /\ ( S .\/ ( X ./\ W ) ) = X /\ ( T .\/ ( X ./\ W ) ) = X ) ) -> S .<_ ( T .\/ V ) ) |