Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme24.b |
|- B = ( Base ` K ) |
2 |
|
cdleme24.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme24.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme24.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme24.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme24.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme24.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme24.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme24.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) ) |
10 |
|
cdleme25cl.i |
|- I = ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) |
11 |
1 2 3 4 5 6 7 8 9
|
cdleme25c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> E! u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
riotacl |
|- ( E! u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) -> ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) e. B ) |
13 |
11 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) e. B ) |
14 |
10 13
|
eqeltrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ ( P =/= Q /\ R .<_ ( P .\/ Q ) ) ) -> I e. B ) |