Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme25cv.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
2 |
|
cdleme25cv.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) ) |
3 |
|
cdleme25cv.g |
|- G = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
4 |
|
cdleme25cv.o |
|- O = ( ( P .\/ Q ) ./\ ( G .\/ ( ( R .\/ z ) ./\ W ) ) ) |
5 |
|
cdleme25cv.i |
|- I = ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) |
6 |
|
cdleme25cv.e |
|- E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) |
7 |
|
breq1 |
|- ( s = z -> ( s .<_ W <-> z .<_ W ) ) |
8 |
7
|
notbid |
|- ( s = z -> ( -. s .<_ W <-> -. z .<_ W ) ) |
9 |
|
breq1 |
|- ( s = z -> ( s .<_ ( P .\/ Q ) <-> z .<_ ( P .\/ Q ) ) ) |
10 |
9
|
notbid |
|- ( s = z -> ( -. s .<_ ( P .\/ Q ) <-> -. z .<_ ( P .\/ Q ) ) ) |
11 |
8 10
|
anbi12d |
|- ( s = z -> ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) <-> ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) ) ) |
12 |
|
oveq1 |
|- ( s = z -> ( s .\/ U ) = ( z .\/ U ) ) |
13 |
|
oveq2 |
|- ( s = z -> ( P .\/ s ) = ( P .\/ z ) ) |
14 |
13
|
oveq1d |
|- ( s = z -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ z ) ./\ W ) ) |
15 |
14
|
oveq2d |
|- ( s = z -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
16 |
12 15
|
oveq12d |
|- ( s = z -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) ) |
17 |
|
oveq2 |
|- ( s = z -> ( R .\/ s ) = ( R .\/ z ) ) |
18 |
17
|
oveq1d |
|- ( s = z -> ( ( R .\/ s ) ./\ W ) = ( ( R .\/ z ) ./\ W ) ) |
19 |
16 18
|
oveq12d |
|- ( s = z -> ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) = ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) |
20 |
19
|
oveq2d |
|- ( s = z -> ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) |
21 |
20
|
eqeq2d |
|- ( s = z -> ( u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) <-> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) ) |
22 |
11 21
|
imbi12d |
|- ( s = z -> ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) ) <-> ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) ) ) |
23 |
22
|
cbvralvw |
|- ( A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) ) |
24 |
1
|
oveq1i |
|- ( F .\/ ( ( R .\/ s ) ./\ W ) ) = ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) |
25 |
24
|
oveq2i |
|- ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ s ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) |
26 |
2 25
|
eqtri |
|- N = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) |
27 |
26
|
eqeq2i |
|- ( u = N <-> u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) ) |
28 |
27
|
imbi2i |
|- ( ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) <-> ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) ) ) |
29 |
28
|
ralbii |
|- ( A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) <-> A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) .\/ ( ( R .\/ s ) ./\ W ) ) ) ) ) |
30 |
3
|
oveq1i |
|- ( G .\/ ( ( R .\/ z ) ./\ W ) ) = ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) |
31 |
30
|
oveq2i |
|- ( ( P .\/ Q ) ./\ ( G .\/ ( ( R .\/ z ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) |
32 |
4 31
|
eqtri |
|- O = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) |
33 |
32
|
eqeq2i |
|- ( u = O <-> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) |
34 |
33
|
imbi2i |
|- ( ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) <-> ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) ) |
35 |
34
|
ralbii |
|- ( A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) .\/ ( ( R .\/ z ) ./\ W ) ) ) ) ) |
36 |
23 29 35
|
3bitr4i |
|- ( A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) |
37 |
36
|
a1i |
|- ( u e. B -> ( A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) ) |
38 |
37
|
riotabiia |
|- ( iota_ u e. B A. s e. A ( ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) -> u = N ) ) = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) |
39 |
38 5 6
|
3eqtr4i |
|- I = E |