Metamath Proof Explorer


Theorem cdleme26e

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme26.b
|- B = ( Base ` K )
cdleme26.l
|- .<_ = ( le ` K )
cdleme26.j
|- .\/ = ( join ` K )
cdleme26.m
|- ./\ = ( meet ` K )
cdleme26.a
|- A = ( Atoms ` K )
cdleme26.h
|- H = ( LHyp ` K )
cdleme26e.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme26e.f
|- F = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )
cdleme26e.n
|- N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) )
cdleme26e.o
|- O = ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) )
cdleme26e.i
|- I = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )
cdleme26e.e
|- E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )
Assertion cdleme26e
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> I .<_ ( E .\/ V ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b
 |-  B = ( Base ` K )
2 cdleme26.l
 |-  .<_ = ( le ` K )
3 cdleme26.j
 |-  .\/ = ( join ` K )
4 cdleme26.m
 |-  ./\ = ( meet ` K )
5 cdleme26.a
 |-  A = ( Atoms ` K )
6 cdleme26.h
 |-  H = ( LHyp ` K )
7 cdleme26e.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme26e.f
 |-  F = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )
9 cdleme26e.n
 |-  N = ( ( P .\/ Q ) ./\ ( F .\/ ( ( S .\/ z ) ./\ W ) ) )
10 cdleme26e.o
 |-  O = ( ( P .\/ Q ) ./\ ( F .\/ ( ( T .\/ z ) ./\ W ) ) )
11 cdleme26e.i
 |-  I = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )
12 cdleme26e.e
 |-  E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )
13 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( K e. HL /\ W e. H ) )
14 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) )
15 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
16 simp21l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> S e. A )
17 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> T e. A )
18 16 17 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( S e. A /\ T e. A ) )
19 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( V e. A /\ V .<_ W ) )
20 simp311
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> P =/= Q )
21 simp32l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( T .\/ V ) = ( P .\/ Q ) )
22 20 21 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) )
23 simp33
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( z e. A /\ -. z .<_ W ) )
24 2 3 4 5 6 7 8 9 10 cdleme22e
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ T e. A ) ) /\ ( ( V e. A /\ V .<_ W ) /\ ( P =/= Q /\ ( T .\/ V ) = ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> N .<_ ( O .\/ V ) )
25 13 14 15 18 19 22 23 24 syl133anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> N .<_ ( O .\/ V ) )
26 simp21r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> -. S .<_ W )
27 simp312
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> S .<_ ( P .\/ Q ) )
28 1 2 3 4 5 6 7 8 9 11 cdleme25cl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ -. S .<_ W ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> I e. B )
29 13 14 15 16 26 20 27 28 syl322anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> I e. B )
30 simp33l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> z e. A )
31 simp33r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> -. z .<_ W )
32 simp32r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> -. z .<_ ( P .\/ Q ) )
33 31 32 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) )
34 1 fvexi
 |-  B e. _V
35 34 11 riotasv
 |-  ( ( I e. B /\ z e. A /\ ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) ) -> I = N )
36 29 30 33 35 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> I = N )
37 simp22r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> -. T .<_ W )
38 simp313
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> T .<_ ( P .\/ Q ) )
39 1 2 3 4 5 6 7 8 10 12 cdleme25cl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( T e. A /\ -. T .<_ W ) /\ ( P =/= Q /\ T .<_ ( P .\/ Q ) ) ) -> E e. B )
40 13 14 15 17 37 20 38 39 syl322anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> E e. B )
41 34 12 riotasv
 |-  ( ( E e. B /\ z e. A /\ ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) ) -> E = O )
42 40 30 33 41 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> E = O )
43 42 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> ( E .\/ V ) = ( O .\/ V ) )
44 25 36 43 3brtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) /\ ( V e. A /\ V .<_ W ) ) /\ ( ( P =/= Q /\ S .<_ ( P .\/ Q ) /\ T .<_ ( P .\/ Q ) ) /\ ( ( T .\/ V ) = ( P .\/ Q ) /\ -. z .<_ ( P .\/ Q ) ) /\ ( z e. A /\ -. z .<_ W ) ) ) -> I .<_ ( E .\/ V ) )