Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
13 |
|
cdleme27.g |
|- G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
14 |
|
cdleme27.o |
|- O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) |
15 |
|
cdleme27.e |
|- E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) |
16 |
|
cdleme27.y |
|- Y = if ( t .<_ ( P .\/ Q ) , E , G ) |
17 |
|
breq1 |
|- ( s = t -> ( s .<_ ( P .\/ Q ) <-> t .<_ ( P .\/ Q ) ) ) |
18 |
|
oveq1 |
|- ( s = t -> ( s .\/ z ) = ( t .\/ z ) ) |
19 |
18
|
oveq1d |
|- ( s = t -> ( ( s .\/ z ) ./\ W ) = ( ( t .\/ z ) ./\ W ) ) |
20 |
19
|
oveq2d |
|- ( s = t -> ( Z .\/ ( ( s .\/ z ) ./\ W ) ) = ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) |
21 |
20
|
oveq2d |
|- ( s = t -> ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) |
22 |
21 10 14
|
3eqtr4g |
|- ( s = t -> N = O ) |
23 |
22
|
eqeq2d |
|- ( s = t -> ( u = N <-> u = O ) ) |
24 |
23
|
imbi2d |
|- ( s = t -> ( ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) <-> ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) ) |
25 |
24
|
ralbidv |
|- ( s = t -> ( A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) ) |
26 |
25
|
riotabidv |
|- ( s = t -> ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) ) |
27 |
26 11 15
|
3eqtr4g |
|- ( s = t -> D = E ) |
28 |
|
oveq1 |
|- ( s = t -> ( s .\/ U ) = ( t .\/ U ) ) |
29 |
|
oveq2 |
|- ( s = t -> ( P .\/ s ) = ( P .\/ t ) ) |
30 |
29
|
oveq1d |
|- ( s = t -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ t ) ./\ W ) ) |
31 |
30
|
oveq2d |
|- ( s = t -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
32 |
28 31
|
oveq12d |
|- ( s = t -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
33 |
32 8 13
|
3eqtr4g |
|- ( s = t -> F = G ) |
34 |
17 27 33
|
ifbieq12d |
|- ( s = t -> if ( s .<_ ( P .\/ Q ) , D , F ) = if ( t .<_ ( P .\/ Q ) , E , G ) ) |
35 |
34 12 16
|
3eqtr4g |
|- ( s = t -> C = Y ) |