Metamath Proof Explorer


Theorem cdleme28

Description: Quantified version of cdleme28c . (Compare cdleme24 .) (Contributed by NM, 7-Feb-2013)

Ref Expression
Hypotheses cdleme26.b
|- B = ( Base ` K )
cdleme26.l
|- .<_ = ( le ` K )
cdleme26.j
|- .\/ = ( join ` K )
cdleme26.m
|- ./\ = ( meet ` K )
cdleme26.a
|- A = ( Atoms ` K )
cdleme26.h
|- H = ( LHyp ` K )
cdleme27.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme27.f
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdleme27.z
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )
cdleme27.n
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) )
cdleme27.d
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )
cdleme27.c
|- C = if ( s .<_ ( P .\/ Q ) , D , F )
cdleme27.g
|- G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdleme27.o
|- O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) )
cdleme27.e
|- E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )
cdleme27.y
|- Y = if ( t .<_ ( P .\/ Q ) , E , G )
Assertion cdleme28
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b
 |-  B = ( Base ` K )
2 cdleme26.l
 |-  .<_ = ( le ` K )
3 cdleme26.j
 |-  .\/ = ( join ` K )
4 cdleme26.m
 |-  ./\ = ( meet ` K )
5 cdleme26.a
 |-  A = ( Atoms ` K )
6 cdleme26.h
 |-  H = ( LHyp ` K )
7 cdleme27.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme27.f
 |-  F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdleme27.z
 |-  Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )
10 cdleme27.n
 |-  N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) )
11 cdleme27.d
 |-  D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )
12 cdleme27.c
 |-  C = if ( s .<_ ( P .\/ Q ) , D , F )
13 cdleme27.g
 |-  G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
14 cdleme27.o
 |-  O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) )
15 cdleme27.e
 |-  E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )
16 cdleme27.y
 |-  Y = if ( t .<_ ( P .\/ Q ) , E , G )
17 simp11
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
18 simp12
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> P =/= Q )
19 simp2l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> s e. A )
20 simp3ll
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> -. s .<_ W )
21 19 20 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( s e. A /\ -. s .<_ W ) )
22 simp2r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> t e. A )
23 simp3rl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> -. t .<_ W )
24 22 23 jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( t e. A /\ -. t .<_ W ) )
25 simp3lr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( s .\/ ( X ./\ W ) ) = X )
26 simp3rr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( t .\/ ( X ./\ W ) ) = X )
27 simp13
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( X e. B /\ -. X .<_ W ) )
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cdleme28c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )
29 17 18 21 24 25 26 27 28 syl133anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )
30 29 3exp
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( s e. A /\ t e. A ) -> ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) ) ) )
31 30 ralrimivv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) ) )