| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme27.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme27.f | 
							 |-  F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme27.z | 
							 |-  Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme27.n | 
							 |-  N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme27.d | 
							 |-  D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme27.c | 
							 |-  C = if ( s .<_ ( P .\/ Q ) , D , F )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme27.g | 
							 |-  G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdleme27.o | 
							 |-  O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							cdleme27.e | 
							 |-  E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )  | 
						
						
							| 16 | 
							
								
							 | 
							cdleme27.y | 
							 |-  Y = if ( t .<_ ( P .\/ Q ) , E , G )  | 
						
						
							| 17 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> P =/= Q )  | 
						
						
							| 19 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> s e. A )  | 
						
						
							| 20 | 
							
								
							 | 
							simp3ll | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> -. s .<_ W )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( s e. A /\ -. s .<_ W ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> t e. A )  | 
						
						
							| 23 | 
							
								
							 | 
							simp3rl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> -. t .<_ W )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( t e. A /\ -. t .<_ W ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3lr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( s .\/ ( X ./\ W ) ) = X )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3rr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( t .\/ ( X ./\ W ) ) = X )  | 
						
						
							| 27 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( X e. B /\ -. X .<_ W ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							cdleme28c | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 29 | 
							
								17 18 21 24 25 26 27 28
							 | 
							syl133anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ t e. A ) /\ ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3exp | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( s e. A /\ t e. A ) -> ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralrimivv | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) ) )  |