| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
| 2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
| 9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
| 10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
| 11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
| 12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
| 13 |
|
cdleme27.g |
|- G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
| 14 |
|
cdleme27.o |
|- O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) |
| 15 |
|
cdleme27.e |
|- E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) ) |
| 16 |
|
cdleme27.y |
|- Y = if ( t .<_ ( P .\/ Q ) , E , G ) |
| 17 |
|
cdleme28a.v |
|- V = ( ( s .\/ t ) ./\ ( X ./\ W ) ) |
| 18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> K e. HL ) |
| 19 |
18
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> K e. Lat ) |
| 20 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> W e. H ) |
| 21 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 22 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 23 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( s e. A /\ -. s .<_ W ) ) |
| 24 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> P =/= Q ) |
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme27cl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> C e. B ) |
| 26 |
18 20 21 22 23 24 25
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> C e. B ) |
| 27 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( t e. A /\ -. t .<_ W ) ) |
| 28 |
1 2 3 4 5 6 7 13 9 14 15 16
|
cdleme27cl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( t e. A /\ -. t .<_ W ) /\ P =/= Q ) ) -> Y e. B ) |
| 29 |
18 20 21 22 27 24 28
|
syl222anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> Y e. B ) |
| 30 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 31 |
30 23 27
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) ) |
| 32 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( X e. B /\ -. X .<_ W ) ) |
| 33 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> s =/= t ) |
| 34 |
|
simp32l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( s .\/ ( X ./\ W ) ) = X ) |
| 35 |
|
simp32r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( t .\/ ( X ./\ W ) ) = X ) |
| 36 |
33 34 35
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( s =/= t /\ ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) ) |
| 37 |
1 2 3 4 5 6 17
|
cdleme23b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( s =/= t /\ ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> V e. A ) |
| 38 |
31 32 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> V e. A ) |
| 39 |
1 5
|
atbase |
|- ( V e. A -> V e. B ) |
| 40 |
38 39
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> V e. B ) |
| 41 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ Y e. B /\ V e. B ) -> ( Y .\/ V ) e. B ) |
| 42 |
19 29 40 41
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( Y .\/ V ) e. B ) |
| 43 |
|
simp33l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> X e. B ) |
| 44 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 45 |
20 44
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> W e. B ) |
| 46 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
| 47 |
19 43 45 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( X ./\ W ) e. B ) |
| 48 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ Y e. B /\ ( X ./\ W ) e. B ) -> ( Y .\/ ( X ./\ W ) ) e. B ) |
| 49 |
19 29 47 48
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( Y .\/ ( X ./\ W ) ) e. B ) |
| 50 |
1 2 3 4 5 6 17
|
cdleme23c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( s =/= t /\ ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> s .<_ ( t .\/ V ) ) |
| 51 |
31 32 36 50
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> s .<_ ( t .\/ V ) ) |
| 52 |
33 51
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( s =/= t /\ s .<_ ( t .\/ V ) ) ) |
| 53 |
1 2 3 4 5 6 17
|
cdleme23a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( X e. B /\ -. X .<_ W ) /\ ( s =/= t /\ ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> V .<_ W ) |
| 54 |
31 32 36 53
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> V .<_ W ) |
| 55 |
38 54
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( V e. A /\ V .<_ W ) ) |
| 56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
cdleme27a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P =/= Q /\ ( s e. A /\ -. s .<_ W ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s =/= t /\ s .<_ ( t .\/ V ) ) /\ ( V e. A /\ V .<_ W ) ) ) -> C .<_ ( Y .\/ V ) ) |
| 57 |
30 24 23 21 22 27 52 55 56
|
syl332anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> C .<_ ( Y .\/ V ) ) |
| 58 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> s e. A ) |
| 59 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> t e. A ) |
| 60 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ s e. A /\ t e. A ) -> ( s .\/ t ) e. B ) |
| 61 |
18 58 59 60
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( s .\/ t ) e. B ) |
| 62 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( s .\/ t ) e. B /\ ( X ./\ W ) e. B ) -> ( ( s .\/ t ) ./\ ( X ./\ W ) ) .<_ ( X ./\ W ) ) |
| 63 |
19 61 47 62
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( ( s .\/ t ) ./\ ( X ./\ W ) ) .<_ ( X ./\ W ) ) |
| 64 |
17 63
|
eqbrtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> V .<_ ( X ./\ W ) ) |
| 65 |
1 2 3
|
latjlej2 |
|- ( ( K e. Lat /\ ( V e. B /\ ( X ./\ W ) e. B /\ Y e. B ) ) -> ( V .<_ ( X ./\ W ) -> ( Y .\/ V ) .<_ ( Y .\/ ( X ./\ W ) ) ) ) |
| 66 |
19 40 47 29 65
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( V .<_ ( X ./\ W ) -> ( Y .\/ V ) .<_ ( Y .\/ ( X ./\ W ) ) ) ) |
| 67 |
64 66
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( Y .\/ V ) .<_ ( Y .\/ ( X ./\ W ) ) ) |
| 68 |
1 2 19 26 42 49 57 67
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> C .<_ ( Y .\/ ( X ./\ W ) ) ) |
| 69 |
1 2 3
|
latlej2 |
|- ( ( K e. Lat /\ Y e. B /\ ( X ./\ W ) e. B ) -> ( X ./\ W ) .<_ ( Y .\/ ( X ./\ W ) ) ) |
| 70 |
19 29 47 69
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( X ./\ W ) .<_ ( Y .\/ ( X ./\ W ) ) ) |
| 71 |
1 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( C e. B /\ ( X ./\ W ) e. B /\ ( Y .\/ ( X ./\ W ) ) e. B ) ) -> ( ( C .<_ ( Y .\/ ( X ./\ W ) ) /\ ( X ./\ W ) .<_ ( Y .\/ ( X ./\ W ) ) ) <-> ( C .\/ ( X ./\ W ) ) .<_ ( Y .\/ ( X ./\ W ) ) ) ) |
| 72 |
19 26 47 49 71
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( ( C .<_ ( Y .\/ ( X ./\ W ) ) /\ ( X ./\ W ) .<_ ( Y .\/ ( X ./\ W ) ) ) <-> ( C .\/ ( X ./\ W ) ) .<_ ( Y .\/ ( X ./\ W ) ) ) ) |
| 73 |
68 70 72
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( C .\/ ( X ./\ W ) ) .<_ ( Y .\/ ( X ./\ W ) ) ) |