| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme27.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme27.f | 
							 |-  F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme27.z | 
							 |-  Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme27.n | 
							 |-  N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme27.d | 
							 |-  D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme27.c | 
							 |-  C = if ( s .<_ ( P .\/ Q ) , D , F )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme27.g | 
							 |-  G = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdleme27.o | 
							 |-  O = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							cdleme27.e | 
							 |-  E = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = O ) )  | 
						
						
							| 16 | 
							
								
							 | 
							cdleme27.y | 
							 |-  Y = if ( t .<_ ( P .\/ Q ) , E , G )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							cdleme27b | 
							 |-  ( s = t -> C = Y )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1d | 
							 |-  ( s = t -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s = t ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl11 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpl12 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl13 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> P =/= Q )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( s e. A /\ -. s .<_ W ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( t e. A /\ -. t .<_ W ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> s =/= t )  | 
						
						
							| 27 | 
							
								
							 | 
							simpl31 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( s .\/ ( X ./\ W ) ) = X )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl32 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( t .\/ ( X ./\ W ) ) = X )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl33 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( X e. B /\ -. X .<_ W ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							cdleme28b | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( s =/= t /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X ) /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 32 | 
							
								20 21 22 23 24 25 26 29 30 31
							 | 
							syl333anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) /\ s =/= t ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  | 
						
						
							| 33 | 
							
								19 32
							 | 
							pm2.61dane | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( s e. A /\ -. s .<_ W ) /\ ( t e. A /\ -. t .<_ W ) ) /\ ( ( s .\/ ( X ./\ W ) ) = X /\ ( t .\/ ( X ./\ W ) ) = X /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( C .\/ ( X ./\ W ) ) = ( Y .\/ ( X ./\ W ) ) )  |