Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme29ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> E. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) ) |
14 |
|
eqid |
|- ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
15 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) |
16 |
|
eqid |
|- ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) |
17 |
|
eqid |
|- if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) = if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17
|
cdleme28 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) .\/ ( X ./\ W ) ) ) ) |
19 |
|
breq1 |
|- ( s = t -> ( s .<_ W <-> t .<_ W ) ) |
20 |
19
|
notbid |
|- ( s = t -> ( -. s .<_ W <-> -. t .<_ W ) ) |
21 |
|
oveq1 |
|- ( s = t -> ( s .\/ ( X ./\ W ) ) = ( t .\/ ( X ./\ W ) ) ) |
22 |
21
|
eqeq1d |
|- ( s = t -> ( ( s .\/ ( X ./\ W ) ) = X <-> ( t .\/ ( X ./\ W ) ) = X ) ) |
23 |
20 22
|
anbi12d |
|- ( s = t -> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) <-> ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) ) |
24 |
12
|
oveq1i |
|- ( C .\/ ( X ./\ W ) ) = ( if ( s .<_ ( P .\/ Q ) , D , F ) .\/ ( X ./\ W ) ) |
25 |
|
breq1 |
|- ( s = t -> ( s .<_ ( P .\/ Q ) <-> t .<_ ( P .\/ Q ) ) ) |
26 |
|
oveq1 |
|- ( s = t -> ( s .\/ z ) = ( t .\/ z ) ) |
27 |
26
|
oveq1d |
|- ( s = t -> ( ( s .\/ z ) ./\ W ) = ( ( t .\/ z ) ./\ W ) ) |
28 |
27
|
oveq2d |
|- ( s = t -> ( Z .\/ ( ( s .\/ z ) ./\ W ) ) = ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) |
29 |
28
|
oveq2d |
|- ( s = t -> ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) |
30 |
10 29
|
eqtrid |
|- ( s = t -> N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) |
31 |
30
|
eqeq2d |
|- ( s = t -> ( u = N <-> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) |
32 |
31
|
imbi2d |
|- ( s = t -> ( ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) <-> ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) ) |
33 |
32
|
ralbidv |
|- ( s = t -> ( A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) <-> A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) ) |
34 |
33
|
riotabidv |
|- ( s = t -> ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) ) |
35 |
11 34
|
eqtrid |
|- ( s = t -> D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) ) |
36 |
|
oveq1 |
|- ( s = t -> ( s .\/ U ) = ( t .\/ U ) ) |
37 |
|
oveq2 |
|- ( s = t -> ( P .\/ s ) = ( P .\/ t ) ) |
38 |
37
|
oveq1d |
|- ( s = t -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ t ) ./\ W ) ) |
39 |
38
|
oveq2d |
|- ( s = t -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
40 |
36 39
|
oveq12d |
|- ( s = t -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
41 |
8 40
|
eqtrid |
|- ( s = t -> F = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) |
42 |
25 35 41
|
ifbieq12d |
|- ( s = t -> if ( s .<_ ( P .\/ Q ) , D , F ) = if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) ) |
43 |
42
|
oveq1d |
|- ( s = t -> ( if ( s .<_ ( P .\/ Q ) , D , F ) .\/ ( X ./\ W ) ) = ( if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) .\/ ( X ./\ W ) ) ) |
44 |
24 43
|
eqtrid |
|- ( s = t -> ( C .\/ ( X ./\ W ) ) = ( if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) .\/ ( X ./\ W ) ) ) |
45 |
23 44
|
reusv3 |
|- ( E. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) -> ( A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) .\/ ( X ./\ W ) ) ) <-> E. v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) ) |
46 |
45
|
biimpd |
|- ( E. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) -> ( A. s e. A A. t e. A ( ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( -. t .<_ W /\ ( t .\/ ( X ./\ W ) ) = X ) ) -> ( C .\/ ( X ./\ W ) ) = ( if ( t .<_ ( P .\/ Q ) , ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( t .\/ z ) ./\ W ) ) ) ) ) , ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) ) .\/ ( X ./\ W ) ) ) -> E. v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) ) |
47 |
13 18 46
|
sylc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> E. v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) |