Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
13 |
|
cdleme29cl.i |
|- I = ( iota_ v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme29c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> E! v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) |
15 |
|
riotacl |
|- ( E! v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) -> ( iota_ v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) e. B ) |
16 |
14 15
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( iota_ v e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> v = ( C .\/ ( X ./\ W ) ) ) ) e. B ) |
17 |
13 16
|
eqeltrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> I e. B ) |