Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
|- B = ( Base ` K ) |
2 |
|
cdleme26.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme26.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme26.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme26.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme26.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme27.f |
|- F = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme27.z |
|- Z = ( ( z .\/ U ) ./\ ( Q .\/ ( ( P .\/ z ) ./\ W ) ) ) |
10 |
|
cdleme27.n |
|- N = ( ( P .\/ Q ) ./\ ( Z .\/ ( ( s .\/ z ) ./\ W ) ) ) |
11 |
|
cdleme27.d |
|- D = ( iota_ u e. B A. z e. A ( ( -. z .<_ W /\ -. z .<_ ( P .\/ Q ) ) -> u = N ) ) |
12 |
|
cdleme27.c |
|- C = if ( s .<_ ( P .\/ Q ) , D , F ) |
13 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( X e. B /\ -. X .<_ W ) ) |
15 |
1 2 3 4 5 6
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) |
17 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL ) |
18 |
17
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> K e. HL ) |
19 |
18
|
hllatd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> K e. Lat ) |
20 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> W e. H ) |
21 |
20
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> W e. H ) |
22 |
|
simpl12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) ) |
23 |
|
simpl13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
24 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( s e. A /\ -. s .<_ W ) ) |
25 |
|
simpl2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> P =/= Q ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme27cl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> C e. B ) |
27 |
18 21 22 23 24 25 26
|
syl222anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> C e. B ) |
28 |
|
simpl3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> X e. B ) |
29 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
30 |
21 29
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> W e. B ) |
31 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
32 |
19 28 30 31
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( X ./\ W ) e. B ) |
33 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ C e. B /\ ( X ./\ W ) e. B ) -> ( C .\/ ( X ./\ W ) ) e. B ) |
34 |
19 27 32 33
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( C .\/ ( X ./\ W ) ) e. B ) |
35 |
34
|
expr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ s e. A ) -> ( -. s .<_ W -> ( C .\/ ( X ./\ W ) ) e. B ) ) |
36 |
35
|
adantrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ s e. A ) -> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( C .\/ ( X ./\ W ) ) e. B ) ) |
37 |
36
|
ancld |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ s e. A ) -> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) ) ) |
38 |
37
|
reximdva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> ( E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> E. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) ) ) |
39 |
16 38
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) -> E. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) /\ ( C .\/ ( X ./\ W ) ) e. B ) ) |