Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
2 |
|
cdleme31.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
3 |
|
cdleme31.c |
|- C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) |
4 |
|
riotaex |
|- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) e. _V |
5 |
3 4
|
eqeltri |
|- C e. _V |
6 |
|
ifexg |
|- ( ( C e. _V /\ X e. B ) -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V ) |
7 |
5 6
|
mpan |
|- ( X e. B -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V ) |
8 |
|
breq1 |
|- ( x = X -> ( x .<_ W <-> X .<_ W ) ) |
9 |
8
|
notbid |
|- ( x = X -> ( -. x .<_ W <-> -. X .<_ W ) ) |
10 |
9
|
anbi2d |
|- ( x = X -> ( ( P =/= Q /\ -. x .<_ W ) <-> ( P =/= Q /\ -. X .<_ W ) ) ) |
11 |
|
oveq1 |
|- ( x = X -> ( x ./\ W ) = ( X ./\ W ) ) |
12 |
11
|
oveq2d |
|- ( x = X -> ( s .\/ ( x ./\ W ) ) = ( s .\/ ( X ./\ W ) ) ) |
13 |
|
id |
|- ( x = X -> x = X ) |
14 |
12 13
|
eqeq12d |
|- ( x = X -> ( ( s .\/ ( x ./\ W ) ) = x <-> ( s .\/ ( X ./\ W ) ) = X ) ) |
15 |
14
|
anbi2d |
|- ( x = X -> ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) <-> ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) |
16 |
11
|
oveq2d |
|- ( x = X -> ( N .\/ ( x ./\ W ) ) = ( N .\/ ( X ./\ W ) ) ) |
17 |
16
|
eqeq2d |
|- ( x = X -> ( z = ( N .\/ ( x ./\ W ) ) <-> z = ( N .\/ ( X ./\ W ) ) ) ) |
18 |
15 17
|
imbi12d |
|- ( x = X -> ( ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) ) |
19 |
18
|
ralbidv |
|- ( x = X -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) ) |
20 |
19
|
riotabidv |
|- ( x = X -> ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) ) |
21 |
20 1 3
|
3eqtr4g |
|- ( x = X -> O = C ) |
22 |
10 21 13
|
ifbieq12d |
|- ( x = X -> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) ) |
23 |
22 2
|
fvmptg |
|- ( ( X e. B /\ if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V ) -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) ) |
24 |
7 23
|
mpdan |
|- ( X e. B -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) ) |