| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31.o | 
							 |-  O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31.f | 
							 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31.c | 
							 |-  C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							riotaex | 
							 |-  ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) e. _V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeltri | 
							 |-  C e. _V  | 
						
						
							| 6 | 
							
								
							 | 
							ifexg | 
							 |-  ( ( C e. _V /\ X e. B ) -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpan | 
							 |-  ( X e. B -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							 |-  ( x = X -> ( x .<_ W <-> X .<_ W ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							notbid | 
							 |-  ( x = X -> ( -. x .<_ W <-> -. X .<_ W ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							 |-  ( x = X -> ( ( P =/= Q /\ -. x .<_ W ) <-> ( P =/= Q /\ -. X .<_ W ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = X -> ( x ./\ W ) = ( X ./\ W ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							 |-  ( x = X -> ( s .\/ ( x ./\ W ) ) = ( s .\/ ( X ./\ W ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							 |-  ( x = X -> x = X )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqeq12d | 
							 |-  ( x = X -> ( ( s .\/ ( x ./\ W ) ) = x <-> ( s .\/ ( X ./\ W ) ) = X ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							anbi2d | 
							 |-  ( x = X -> ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) <-> ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) )  | 
						
						
							| 16 | 
							
								11
							 | 
							oveq2d | 
							 |-  ( x = X -> ( N .\/ ( x ./\ W ) ) = ( N .\/ ( X ./\ W ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq2d | 
							 |-  ( x = X -> ( z = ( N .\/ ( x ./\ W ) ) <-> z = ( N .\/ ( X ./\ W ) ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							imbi12d | 
							 |-  ( x = X -> ( ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralbidv | 
							 |-  ( x = X -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							riotabidv | 
							 |-  ( x = X -> ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 21 | 
							
								20 1 3
							 | 
							3eqtr4g | 
							 |-  ( x = X -> O = C )  | 
						
						
							| 22 | 
							
								10 21 13
							 | 
							ifbieq12d | 
							 |-  ( x = X -> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) )  | 
						
						
							| 23 | 
							
								22 2
							 | 
							fvmptg | 
							 |-  ( ( X e. B /\ if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) e. _V ) -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) )  | 
						
						
							| 24 | 
							
								7 23
							 | 
							mpdan | 
							 |-  ( X e. B -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) )  |